Lorentzian compact manifolds: Isometries and geodesics

Autores
del Barco, Viviana; Ovando, Gabriela Paola; Vittone, Francisco
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we investigate families of compact Lorentzian manifolds in dimension four. We show that every lightlike geodesic on such spaces is periodic, while there are closed and non-closed spacelike and timelike geodesics. Also their isometry groups are computed. We also show that there is a non trivial action by isometries of H3(R) on the nilmanifold S 1 × (Γk\H3(R)) for Γk, a lattice of H3(R).
Fil: del Barco, Viviana. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Lorentz Manifolds
Closed Geodesics
Isometry Actions
Compact Homogeneous Manifolds
Solvable Lie Groups
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29856

id CONICETDig_5e2ea39e8b4ee53e683c31a4b363e5d8
oai_identifier_str oai:ri.conicet.gov.ar:11336/29856
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lorentzian compact manifolds: Isometries and geodesicsdel Barco, VivianaOvando, Gabriela PaolaVittone, FranciscoLorentz ManifoldsClosed GeodesicsIsometry ActionsCompact Homogeneous ManifoldsSolvable Lie Groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we investigate families of compact Lorentzian manifolds in dimension four. We show that every lightlike geodesic on such spaces is periodic, while there are closed and non-closed spacelike and timelike geodesics. Also their isometry groups are computed. We also show that there is a non trivial action by isometries of H3(R) on the nilmanifold S 1 × (Γk\H3(R)) for Γk, a lattice of H3(R).Fil: del Barco, Viviana. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; ArgentinaFil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29856del Barco, Viviana; Ovando, Gabriela Paola; Vittone, Francisco; Lorentzian compact manifolds: Isometries and geodesics; Elsevier Science; Journal Of Geometry And Physics; 78; 4-2014; 48-580393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2014.01.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044014000126info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:11Zoai:ri.conicet.gov.ar:11336/29856instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:12.168CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lorentzian compact manifolds: Isometries and geodesics
title Lorentzian compact manifolds: Isometries and geodesics
spellingShingle Lorentzian compact manifolds: Isometries and geodesics
del Barco, Viviana
Lorentz Manifolds
Closed Geodesics
Isometry Actions
Compact Homogeneous Manifolds
Solvable Lie Groups
title_short Lorentzian compact manifolds: Isometries and geodesics
title_full Lorentzian compact manifolds: Isometries and geodesics
title_fullStr Lorentzian compact manifolds: Isometries and geodesics
title_full_unstemmed Lorentzian compact manifolds: Isometries and geodesics
title_sort Lorentzian compact manifolds: Isometries and geodesics
dc.creator.none.fl_str_mv del Barco, Viviana
Ovando, Gabriela Paola
Vittone, Francisco
author del Barco, Viviana
author_facet del Barco, Viviana
Ovando, Gabriela Paola
Vittone, Francisco
author_role author
author2 Ovando, Gabriela Paola
Vittone, Francisco
author2_role author
author
dc.subject.none.fl_str_mv Lorentz Manifolds
Closed Geodesics
Isometry Actions
Compact Homogeneous Manifolds
Solvable Lie Groups
topic Lorentz Manifolds
Closed Geodesics
Isometry Actions
Compact Homogeneous Manifolds
Solvable Lie Groups
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we investigate families of compact Lorentzian manifolds in dimension four. We show that every lightlike geodesic on such spaces is periodic, while there are closed and non-closed spacelike and timelike geodesics. Also their isometry groups are computed. We also show that there is a non trivial action by isometries of H3(R) on the nilmanifold S 1 × (Γk\H3(R)) for Γk, a lattice of H3(R).
Fil: del Barco, Viviana. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ovando, Gabriela Paola. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this work we investigate families of compact Lorentzian manifolds in dimension four. We show that every lightlike geodesic on such spaces is periodic, while there are closed and non-closed spacelike and timelike geodesics. Also their isometry groups are computed. We also show that there is a non trivial action by isometries of H3(R) on the nilmanifold S 1 × (Γk\H3(R)) for Γk, a lattice of H3(R).
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29856
del Barco, Viviana; Ovando, Gabriela Paola; Vittone, Francisco; Lorentzian compact manifolds: Isometries and geodesics; Elsevier Science; Journal Of Geometry And Physics; 78; 4-2014; 48-58
0393-0440
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29856
identifier_str_mv del Barco, Viviana; Ovando, Gabriela Paola; Vittone, Francisco; Lorentzian compact manifolds: Isometries and geodesics; Elsevier Science; Journal Of Geometry And Physics; 78; 4-2014; 48-58
0393-0440
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2014.01.005
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044014000126
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269207701487616
score 13.13397