On the instability of two entropic dynamical models

Autores
Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study two entropic dynamical models from the viewpoint of information geometry. We study the geometry structures of the associated statistical manifolds. In order to analyse the character of the instability of the systems, we obtain their geodesics and compute their Jacobi vector fields. The results of this work improve and extend a recent advance in this topics studied in Peng et al.[13].
Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
INFORMATION GEOMETRY
STATISTICAL MANIFOLDS
RIEMANNIAN MANIFOLDS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55578

id CONICETDig_0041a288034f2e16f939c6b3627ca1a1
oai_identifier_str oai:ri.conicet.gov.ar:11336/55578
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the instability of two entropic dynamical modelsHenry, Guillermo SebastianRodriguez, Daniela AndreaINFORMATION GEOMETRYSTATISTICAL MANIFOLDSRIEMANNIAN MANIFOLDShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study two entropic dynamical models from the viewpoint of information geometry. We study the geometry structures of the associated statistical manifolds. In order to analyse the character of the instability of the systems, we obtain their geodesics and compute their Jacobi vector fields. The results of this work improve and extend a recent advance in this topics studied in Peng et al.[13].Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaPergamon-Elsevier Science Ltd2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55578Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea; On the instability of two entropic dynamical models; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 91; 10-2016; 604-6090960-0779CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2016.08.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960077916302508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:28Zoai:ri.conicet.gov.ar:11336/55578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:29.257CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the instability of two entropic dynamical models
title On the instability of two entropic dynamical models
spellingShingle On the instability of two entropic dynamical models
Henry, Guillermo Sebastian
INFORMATION GEOMETRY
STATISTICAL MANIFOLDS
RIEMANNIAN MANIFOLDS
title_short On the instability of two entropic dynamical models
title_full On the instability of two entropic dynamical models
title_fullStr On the instability of two entropic dynamical models
title_full_unstemmed On the instability of two entropic dynamical models
title_sort On the instability of two entropic dynamical models
dc.creator.none.fl_str_mv Henry, Guillermo Sebastian
Rodriguez, Daniela Andrea
author Henry, Guillermo Sebastian
author_facet Henry, Guillermo Sebastian
Rodriguez, Daniela Andrea
author_role author
author2 Rodriguez, Daniela Andrea
author2_role author
dc.subject.none.fl_str_mv INFORMATION GEOMETRY
STATISTICAL MANIFOLDS
RIEMANNIAN MANIFOLDS
topic INFORMATION GEOMETRY
STATISTICAL MANIFOLDS
RIEMANNIAN MANIFOLDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study two entropic dynamical models from the viewpoint of information geometry. We study the geometry structures of the associated statistical manifolds. In order to analyse the character of the instability of the systems, we obtain their geodesics and compute their Jacobi vector fields. The results of this work improve and extend a recent advance in this topics studied in Peng et al.[13].
Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description In this paper we study two entropic dynamical models from the viewpoint of information geometry. We study the geometry structures of the associated statistical manifolds. In order to analyse the character of the instability of the systems, we obtain their geodesics and compute their Jacobi vector fields. The results of this work improve and extend a recent advance in this topics studied in Peng et al.[13].
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55578
Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea; On the instability of two entropic dynamical models; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 91; 10-2016; 604-609
0960-0779
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55578
identifier_str_mv Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea; On the instability of two entropic dynamical models; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 91; 10-2016; 604-609
0960-0779
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2016.08.013
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960077916302508
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268862040506368
score 13.13397