The rectifiable distance in the unitary Fredholm group
- Autores
- Andruchow, Esteban; Larotonda, Gabriel Andrés
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators).
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Convexity radius
Geodesic convexity
Short path
Unitary Fredholm group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19433
Ver los metadatos del registro completo
id |
CONICETDig_d4cf79d814c0822d6980235e795d799c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19433 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The rectifiable distance in the unitary Fredholm groupAndruchow, EstebanLarotonda, Gabriel AndrésConvexity radiusGeodesic convexityShort pathUnitary Fredholm grouphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators).Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaPolish Academy of Sciences. Institute of Mathematics2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19433Andruchow, Esteban; Larotonda, Gabriel Andrés; The rectifiable distance in the unitary Fredholm group; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 196; 2010; 2-2010; 151-1780039-3223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0812.4475info:eu-repo/semantics/altIdentifier/doi/10.4064/sm196-2-4info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/196/2/90702/the-rectifiable-distance-in-the-unitary-fredholm-groupinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:43Zoai:ri.conicet.gov.ar:11336/19433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:43.398CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The rectifiable distance in the unitary Fredholm group |
title |
The rectifiable distance in the unitary Fredholm group |
spellingShingle |
The rectifiable distance in the unitary Fredholm group Andruchow, Esteban Convexity radius Geodesic convexity Short path Unitary Fredholm group |
title_short |
The rectifiable distance in the unitary Fredholm group |
title_full |
The rectifiable distance in the unitary Fredholm group |
title_fullStr |
The rectifiable distance in the unitary Fredholm group |
title_full_unstemmed |
The rectifiable distance in the unitary Fredholm group |
title_sort |
The rectifiable distance in the unitary Fredholm group |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Larotonda, Gabriel Andrés |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Larotonda, Gabriel Andrés |
author_role |
author |
author2 |
Larotonda, Gabriel Andrés |
author2_role |
author |
dc.subject.none.fl_str_mv |
Convexity radius Geodesic convexity Short path Unitary Fredholm group |
topic |
Convexity radius Geodesic convexity Short path Unitary Fredholm group |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators). Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators). |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19433 Andruchow, Esteban; Larotonda, Gabriel Andrés; The rectifiable distance in the unitary Fredholm group; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 196; 2010; 2-2010; 151-178 0039-3223 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19433 |
identifier_str_mv |
Andruchow, Esteban; Larotonda, Gabriel Andrés; The rectifiable distance in the unitary Fredholm group; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 196; 2010; 2-2010; 151-178 0039-3223 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0812.4475 info:eu-repo/semantics/altIdentifier/doi/10.4064/sm196-2-4 info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/196/2/90702/the-rectifiable-distance-in-the-unitary-fredholm-group |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269971348979712 |
score |
13.13397 |