The rectifiable distance in the unitary Fredholm group

Autores
Andruchow, Esteban; Larotonda, Gabriel Andrés
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators).
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Convexity radius
Geodesic convexity
Short path
Unitary Fredholm group
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19433

id CONICETDig_d4cf79d814c0822d6980235e795d799c
oai_identifier_str oai:ri.conicet.gov.ar:11336/19433
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The rectifiable distance in the unitary Fredholm groupAndruchow, EstebanLarotonda, Gabriel AndrésConvexity radiusGeodesic convexityShort pathUnitary Fredholm grouphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators).Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaPolish Academy of Sciences. Institute of Mathematics2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19433Andruchow, Esteban; Larotonda, Gabriel Andrés; The rectifiable distance in the unitary Fredholm group; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 196; 2010; 2-2010; 151-1780039-3223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0812.4475info:eu-repo/semantics/altIdentifier/doi/10.4064/sm196-2-4info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/196/2/90702/the-rectifiable-distance-in-the-unitary-fredholm-groupinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:43Zoai:ri.conicet.gov.ar:11336/19433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:43.398CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The rectifiable distance in the unitary Fredholm group
title The rectifiable distance in the unitary Fredholm group
spellingShingle The rectifiable distance in the unitary Fredholm group
Andruchow, Esteban
Convexity radius
Geodesic convexity
Short path
Unitary Fredholm group
title_short The rectifiable distance in the unitary Fredholm group
title_full The rectifiable distance in the unitary Fredholm group
title_fullStr The rectifiable distance in the unitary Fredholm group
title_full_unstemmed The rectifiable distance in the unitary Fredholm group
title_sort The rectifiable distance in the unitary Fredholm group
dc.creator.none.fl_str_mv Andruchow, Esteban
Larotonda, Gabriel Andrés
author Andruchow, Esteban
author_facet Andruchow, Esteban
Larotonda, Gabriel Andrés
author_role author
author2 Larotonda, Gabriel Andrés
author2_role author
dc.subject.none.fl_str_mv Convexity radius
Geodesic convexity
Short path
Unitary Fredholm group
topic Convexity radius
Geodesic convexity
Short path
Unitary Fredholm group
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators).
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators).
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19433
Andruchow, Esteban; Larotonda, Gabriel Andrés; The rectifiable distance in the unitary Fredholm group; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 196; 2010; 2-2010; 151-178
0039-3223
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19433
identifier_str_mv Andruchow, Esteban; Larotonda, Gabriel Andrés; The rectifiable distance in the unitary Fredholm group; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 196; 2010; 2-2010; 151-178
0039-3223
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0812.4475
info:eu-repo/semantics/altIdentifier/doi/10.4064/sm196-2-4
info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/196/2/90702/the-rectifiable-distance-in-the-unitary-fredholm-group
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269971348979712
score 13.13397