Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
- Autores
- Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Modeling
Optimization
Biotechnology
Experimental design
Dynamic experiments - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24526
Ver los metadatos del registro completo
id |
CONICETDig_2751760659da1b2325bfcda87ce6bbb9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24526 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocessesCristaldi, Mariano DanielGrau, Ricardo José AntonioMartínez, Ernesto CarlosModelingOptimizationBiotechnologyExperimental designDynamic experimentshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaDe Gruyter2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24526Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-341934-2659CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2202/1934-2659.1298info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/cppm.2009.4.2/cppm.2009.4.2.1298/cppm.2009.4.2.1298.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:38Zoai:ri.conicet.gov.ar:11336/24526instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:39.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses |
title |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses |
spellingShingle |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses Cristaldi, Mariano Daniel Modeling Optimization Biotechnology Experimental design Dynamic experiments |
title_short |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses |
title_full |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses |
title_fullStr |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses |
title_full_unstemmed |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses |
title_sort |
Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses |
dc.creator.none.fl_str_mv |
Cristaldi, Mariano Daniel Grau, Ricardo José Antonio Martínez, Ernesto Carlos |
author |
Cristaldi, Mariano Daniel |
author_facet |
Cristaldi, Mariano Daniel Grau, Ricardo José Antonio Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Grau, Ricardo José Antonio Martínez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Modeling Optimization Biotechnology Experimental design Dynamic experiments |
topic |
Modeling Optimization Biotechnology Experimental design Dynamic experiments |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising. Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24526 Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-34 1934-2659 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24526 |
identifier_str_mv |
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-34 1934-2659 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2202/1934-2659.1298 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/cppm.2009.4.2/cppm.2009.4.2.1298/cppm.2009.4.2.1298.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613855053873152 |
score |
13.070432 |