Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses

Autores
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
Modeling
Optimization
Biotechnology
Experimental design
Dynamic experiments
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24526

id CONICETDig_2751760659da1b2325bfcda87ce6bbb9
oai_identifier_str oai:ri.conicet.gov.ar:11336/24526
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Iterative design of dynamic experiments in modeling for optimization of innovative bioprocessesCristaldi, Mariano DanielGrau, Ricardo José AntonioMartínez, Ernesto CarlosModelingOptimizationBiotechnologyExperimental designDynamic experimentshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaDe Gruyter2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24526Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-341934-2659CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2202/1934-2659.1298info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/cppm.2009.4.2/cppm.2009.4.2.1298/cppm.2009.4.2.1298.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:38Zoai:ri.conicet.gov.ar:11336/24526instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:39.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
title Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
spellingShingle Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
Cristaldi, Mariano Daniel
Modeling
Optimization
Biotechnology
Experimental design
Dynamic experiments
title_short Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
title_full Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
title_fullStr Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
title_full_unstemmed Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
title_sort Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses
dc.creator.none.fl_str_mv Cristaldi, Mariano Daniel
Grau, Ricardo José Antonio
Martínez, Ernesto Carlos
author Cristaldi, Mariano Daniel
author_facet Cristaldi, Mariano Daniel
Grau, Ricardo José Antonio
Martínez, Ernesto Carlos
author_role author
author2 Grau, Ricardo José Antonio
Martínez, Ernesto Carlos
author2_role author
author
dc.subject.none.fl_str_mv Modeling
Optimization
Biotechnology
Experimental design
Dynamic experiments
topic Modeling
Optimization
Biotechnology
Experimental design
Dynamic experiments
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. In this paper, a novel iterative methodology for the model-based design of dynamic experiments in modeling for optimization is developed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 (rIL-11) whose DNA sequence has been cloned in an Escherichia coli strain. At each iteration, the proposed methodology resorts to a library of tendency models to increasingly bias bioreactor operating conditions towards an optimum. By selecting the ‘most informative’ tendency model in the sequel, the next dynamic experiment is defined by re-optimizing the input policy and calculating optimal sampling times. Model selection is based on minimizing an error measure which distinguishes between parametric and structural uncertainty to selectively bias data gathering towards improved operating conditions. The parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA) to pinpoint which parameters are keys for estimating the objective function. Results obtained after just a few iterations are very promising.
publishDate 2009
dc.date.none.fl_str_mv 2009-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24526
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-34
1934-2659
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24526
identifier_str_mv Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Iterative design of dynamic experiments in modeling for optimization of innovative bioprocesses; De Gruyter; Chemical Product and Process Modeling; 4; 2; 5-2009; 6-34
1934-2659
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2202/1934-2659.1298
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/cppm.2009.4.2/cppm.2009.4.2.1298/cppm.2009.4.2.1298.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613855053873152
score 13.070432