Model-based run-to-run optimization under uncertainty of biodiesel production
- Autores
- Luna, Martín Francisco; Martinez, Ernesto Carlos
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A significant source of uncertainty in biodiesel production is the variability of feed composition since the percentage and type of triglycerides varies considerably across different raw materials. Also, due to the complexity of both transesterification and saponification kinetics, first-principles models of biodiesel production typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates tendency models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of process performance are re-estimated using data from experiments designed for maximizing information and performance. Results obtained highlight that Bayesian optimal design of experiments using a probabilistic tendency model is effective in achieving the maximum ester content and yield in biodiesel production even though significant uncertainty in feed composition and modeling errors are present.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Reg.santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Biodiesel
Modeling for Optimization
Tendency Models
Uncertainty - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16300
Ver los metadatos del registro completo
id |
CONICETDig_13f5459c8302d2afa1e60eeeb59bb0a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16300 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model-based run-to-run optimization under uncertainty of biodiesel productionLuna, Martín FranciscoMartinez, Ernesto CarlosBiodieselModeling for OptimizationTendency ModelsUncertaintyhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A significant source of uncertainty in biodiesel production is the variability of feed composition since the percentage and type of triglycerides varies considerably across different raw materials. Also, due to the complexity of both transesterification and saponification kinetics, first-principles models of biodiesel production typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates tendency models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of process performance are re-estimated using data from experiments designed for maximizing information and performance. Results obtained highlight that Bayesian optimal design of experiments using a probabilistic tendency model is effective in achieving the maximum ester content and yield in biodiesel production even though significant uncertainty in feed composition and modeling errors are present.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Reg.santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16300Luna, Martín Francisco; Martinez, Ernesto Carlos; Model-based run-to-run optimization under uncertainty of biodiesel production; Elsevier; Computer Aided Chemical Engineering; 32; 6-2013; 103-1081570-7946enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-63234-0.50018-Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:25Zoai:ri.conicet.gov.ar:11336/16300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:26.133CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model-based run-to-run optimization under uncertainty of biodiesel production |
title |
Model-based run-to-run optimization under uncertainty of biodiesel production |
spellingShingle |
Model-based run-to-run optimization under uncertainty of biodiesel production Luna, Martín Francisco Biodiesel Modeling for Optimization Tendency Models Uncertainty |
title_short |
Model-based run-to-run optimization under uncertainty of biodiesel production |
title_full |
Model-based run-to-run optimization under uncertainty of biodiesel production |
title_fullStr |
Model-based run-to-run optimization under uncertainty of biodiesel production |
title_full_unstemmed |
Model-based run-to-run optimization under uncertainty of biodiesel production |
title_sort |
Model-based run-to-run optimization under uncertainty of biodiesel production |
dc.creator.none.fl_str_mv |
Luna, Martín Francisco Martinez, Ernesto Carlos |
author |
Luna, Martín Francisco |
author_facet |
Luna, Martín Francisco Martinez, Ernesto Carlos |
author_role |
author |
author2 |
Martinez, Ernesto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Biodiesel Modeling for Optimization Tendency Models Uncertainty |
topic |
Biodiesel Modeling for Optimization Tendency Models Uncertainty |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A significant source of uncertainty in biodiesel production is the variability of feed composition since the percentage and type of triglycerides varies considerably across different raw materials. Also, due to the complexity of both transesterification and saponification kinetics, first-principles models of biodiesel production typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates tendency models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of process performance are re-estimated using data from experiments designed for maximizing information and performance. Results obtained highlight that Bayesian optimal design of experiments using a probabilistic tendency model is effective in achieving the maximum ester content and yield in biodiesel production even though significant uncertainty in feed composition and modeling errors are present. Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Reg.santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
A significant source of uncertainty in biodiesel production is the variability of feed composition since the percentage and type of triglycerides varies considerably across different raw materials. Also, due to the complexity of both transesterification and saponification kinetics, first-principles models of biodiesel production typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates tendency models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of process performance are re-estimated using data from experiments designed for maximizing information and performance. Results obtained highlight that Bayesian optimal design of experiments using a probabilistic tendency model is effective in achieving the maximum ester content and yield in biodiesel production even though significant uncertainty in feed composition and modeling errors are present. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16300 Luna, Martín Francisco; Martinez, Ernesto Carlos; Model-based run-to-run optimization under uncertainty of biodiesel production; Elsevier; Computer Aided Chemical Engineering; 32; 6-2013; 103-108 1570-7946 |
url |
http://hdl.handle.net/11336/16300 |
identifier_str_mv |
Luna, Martín Francisco; Martinez, Ernesto Carlos; Model-based run-to-run optimization under uncertainty of biodiesel production; Elsevier; Computer Aided Chemical Engineering; 32; 6-2013; 103-108 1570-7946 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/B978-0-444-63234-0.50018-X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613103563571200 |
score |
13.070432 |