Model-based run-to-run optimization for process development

Autores
Luna, Martín Francisco; Martínez, Ernesto Carlos
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Research and development of new processes is a fundamental part of any innovative industry. For process engineers, finding optimal operating conditions for new processes from the early stages is a main issue, since it improves economic viability, helps others areas of R&D by avoiding product bottlenecks and shortens the time-to-market period. Model-based optimization strategies are helpful in doing so, but imperfect models with parametric or structural errors can lead to suboptimal operating conditions. In this work, a methodology that uses probabilistic tendency models that are constantly updated through experimental feedback is proposed in order to rapidly and efficiently find improved operating conditions. Characterization of the uncertainty is used to make safe predictions even with scarce data, which is typical in this early stage of process development. The methodology is tested with an example from the traditional innovative pharmaceutical industry.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
EXPERIMENTAL DESIGN
MODELING FOR OPTIMIZATION
PROCESS DEVELOPMENT
PROCESS SYSTEM ENGINEERING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87143

id CONICETDig_150d7bb8bab314623ed472fcb8fd3da2
oai_identifier_str oai:ri.conicet.gov.ar:11336/87143
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Model-based run-to-run optimization for process developmentLuna, Martín FranciscoMartínez, Ernesto CarlosEXPERIMENTAL DESIGNMODELING FOR OPTIMIZATIONPROCESS DEVELOPMENTPROCESS SYSTEM ENGINEERINGhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Research and development of new processes is a fundamental part of any innovative industry. For process engineers, finding optimal operating conditions for new processes from the early stages is a main issue, since it improves economic viability, helps others areas of R&D by avoiding product bottlenecks and shortens the time-to-market period. Model-based optimization strategies are helpful in doing so, but imperfect models with parametric or structural errors can lead to suboptimal operating conditions. In this work, a methodology that uses probabilistic tendency models that are constantly updated through experimental feedback is proposed in order to rapidly and efficiently find improved operating conditions. Characterization of the uncertainty is used to make safe predictions even with scarce data, which is typical in this early stage of process development. The methodology is tested with an example from the traditional innovative pharmaceutical industry.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaBrazilian Society of Chemical Engineering2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87143Luna, Martín Francisco; Martínez, Ernesto Carlos; Model-based run-to-run optimization for process development; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 35; 3; 7-2018; 1063-10800104-66321678-4383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/www.scielo.br/bjceinfo:eu-repo/semantics/altIdentifier/doi/10.1590/0104-6632.20180353s20170212info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:12Zoai:ri.conicet.gov.ar:11336/87143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:12.489CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Model-based run-to-run optimization for process development
title Model-based run-to-run optimization for process development
spellingShingle Model-based run-to-run optimization for process development
Luna, Martín Francisco
EXPERIMENTAL DESIGN
MODELING FOR OPTIMIZATION
PROCESS DEVELOPMENT
PROCESS SYSTEM ENGINEERING
title_short Model-based run-to-run optimization for process development
title_full Model-based run-to-run optimization for process development
title_fullStr Model-based run-to-run optimization for process development
title_full_unstemmed Model-based run-to-run optimization for process development
title_sort Model-based run-to-run optimization for process development
dc.creator.none.fl_str_mv Luna, Martín Francisco
Martínez, Ernesto Carlos
author Luna, Martín Francisco
author_facet Luna, Martín Francisco
Martínez, Ernesto Carlos
author_role author
author2 Martínez, Ernesto Carlos
author2_role author
dc.subject.none.fl_str_mv EXPERIMENTAL DESIGN
MODELING FOR OPTIMIZATION
PROCESS DEVELOPMENT
PROCESS SYSTEM ENGINEERING
topic EXPERIMENTAL DESIGN
MODELING FOR OPTIMIZATION
PROCESS DEVELOPMENT
PROCESS SYSTEM ENGINEERING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Research and development of new processes is a fundamental part of any innovative industry. For process engineers, finding optimal operating conditions for new processes from the early stages is a main issue, since it improves economic viability, helps others areas of R&D by avoiding product bottlenecks and shortens the time-to-market period. Model-based optimization strategies are helpful in doing so, but imperfect models with parametric or structural errors can lead to suboptimal operating conditions. In this work, a methodology that uses probabilistic tendency models that are constantly updated through experimental feedback is proposed in order to rapidly and efficiently find improved operating conditions. Characterization of the uncertainty is used to make safe predictions even with scarce data, which is typical in this early stage of process development. The methodology is tested with an example from the traditional innovative pharmaceutical industry.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Research and development of new processes is a fundamental part of any innovative industry. For process engineers, finding optimal operating conditions for new processes from the early stages is a main issue, since it improves economic viability, helps others areas of R&D by avoiding product bottlenecks and shortens the time-to-market period. Model-based optimization strategies are helpful in doing so, but imperfect models with parametric or structural errors can lead to suboptimal operating conditions. In this work, a methodology that uses probabilistic tendency models that are constantly updated through experimental feedback is proposed in order to rapidly and efficiently find improved operating conditions. Characterization of the uncertainty is used to make safe predictions even with scarce data, which is typical in this early stage of process development. The methodology is tested with an example from the traditional innovative pharmaceutical industry.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87143
Luna, Martín Francisco; Martínez, Ernesto Carlos; Model-based run-to-run optimization for process development; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 35; 3; 7-2018; 1063-1080
0104-6632
1678-4383
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87143
identifier_str_mv Luna, Martín Francisco; Martínez, Ernesto Carlos; Model-based run-to-run optimization for process development; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 35; 3; 7-2018; 1063-1080
0104-6632
1678-4383
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/www.scielo.br/bjce
info:eu-repo/semantics/altIdentifier/doi/10.1590/0104-6632.20180353s20170212
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613094555254784
score 13.070432