A characterization of composition operators on algebras of analytic functions

Autores
Carando, Daniel Germán
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Composition operators
Holomorphic functions over C(K)
Linearization of functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/244712

id CONICETDig_a5eb20dd3021992fb4eb7e70e58535ac
oai_identifier_str oai:ri.conicet.gov.ar:11336/244712
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A characterization of composition operators on algebras of analytic functionsCarando, Daniel GermánComposition operatorsHolomorphic functions over C(K)Linearization of functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaCambridge University Press2008-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244712Carando, Daniel Germán; A characterization of composition operators on algebras of analytic functions; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 51; 2; 7-2008; 305-3130013-0915CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/characterization-of-composition-operators-on-algebras-of-analytic-functions/436471CD7420F0C26228227B2E99E697info:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091506001143info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:41:25Zoai:ri.conicet.gov.ar:11336/244712instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:41:25.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A characterization of composition operators on algebras of analytic functions
title A characterization of composition operators on algebras of analytic functions
spellingShingle A characterization of composition operators on algebras of analytic functions
Carando, Daniel Germán
Composition operators
Holomorphic functions over C(K)
Linearization of functions
title_short A characterization of composition operators on algebras of analytic functions
title_full A characterization of composition operators on algebras of analytic functions
title_fullStr A characterization of composition operators on algebras of analytic functions
title_full_unstemmed A characterization of composition operators on algebras of analytic functions
title_sort A characterization of composition operators on algebras of analytic functions
dc.creator.none.fl_str_mv Carando, Daniel Germán
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
author_role author
dc.subject.none.fl_str_mv Composition operators
Holomorphic functions over C(K)
Linearization of functions
topic Composition operators
Holomorphic functions over C(K)
Linearization of functions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras.
publishDate 2008
dc.date.none.fl_str_mv 2008-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/244712
Carando, Daniel Germán; A characterization of composition operators on algebras of analytic functions; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 51; 2; 7-2008; 305-313
0013-0915
CONICET Digital
CONICET
url http://hdl.handle.net/11336/244712
identifier_str_mv Carando, Daniel Germán; A characterization of composition operators on algebras of analytic functions; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 51; 2; 7-2008; 305-313
0013-0915
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/characterization-of-composition-operators-on-algebras-of-analytic-functions/436471CD7420F0C26228227B2E99E697
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091506001143
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082911196938240
score 13.22299