A characterization of composition operators on algebras of analytic functions
- Autores
- Carando, Daniel Germán
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Composition operators
Holomorphic functions over C(K)
Linearization of functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244712
Ver los metadatos del registro completo
id |
CONICETDig_a5eb20dd3021992fb4eb7e70e58535ac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244712 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A characterization of composition operators on algebras of analytic functionsCarando, Daniel GermánComposition operatorsHolomorphic functions over C(K)Linearization of functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaCambridge University Press2008-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244712Carando, Daniel Germán; A characterization of composition operators on algebras of analytic functions; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 51; 2; 7-2008; 305-3130013-0915CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/characterization-of-composition-operators-on-algebras-of-analytic-functions/436471CD7420F0C26228227B2E99E697info:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091506001143info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:41:25Zoai:ri.conicet.gov.ar:11336/244712instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:41:25.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A characterization of composition operators on algebras of analytic functions |
title |
A characterization of composition operators on algebras of analytic functions |
spellingShingle |
A characterization of composition operators on algebras of analytic functions Carando, Daniel Germán Composition operators Holomorphic functions over C(K) Linearization of functions |
title_short |
A characterization of composition operators on algebras of analytic functions |
title_full |
A characterization of composition operators on algebras of analytic functions |
title_fullStr |
A characterization of composition operators on algebras of analytic functions |
title_full_unstemmed |
A characterization of composition operators on algebras of analytic functions |
title_sort |
A characterization of composition operators on algebras of analytic functions |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán |
author_role |
author |
dc.subject.none.fl_str_mv |
Composition operators Holomorphic functions over C(K) Linearization of functions |
topic |
Composition operators Holomorphic functions over C(K) Linearization of functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We give a characterization of composition operators between algebras of analytic functions on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative operators that are transposes of operators of between the preduals of the algebras. The special cases of $H^\infty(U)$ and $H_{\mathrm{b}}(U)$ are considered. In these cases, the composition operators are those which are pointwise-to-pointwise continuous and/or $\tau_0$-to-$\tau_0$ continuous (where $\tau_0$ is the compact-open topology). We obtain Banach–Stone-type theorems for these algebras. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244712 Carando, Daniel Germán; A characterization of composition operators on algebras of analytic functions; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 51; 2; 7-2008; 305-313 0013-0915 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244712 |
identifier_str_mv |
Carando, Daniel Germán; A characterization of composition operators on algebras of analytic functions; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 51; 2; 7-2008; 305-313 0013-0915 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/characterization-of-composition-operators-on-algebras-of-analytic-functions/436471CD7420F0C26228227B2E99E697 info:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091506001143 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082911196938240 |
score |
13.22299 |