Orthogonally additive holomorphic functions of bounded type over C(K)
- Autores
- Carando, Daniel Germán; Lassalle, Silvia Beatriz; Zalduendo, Ignacio Martin
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is known that all k-homogeneous orthogonally additive polynomials P over C(K) are of the form P(x)= ∫Kxkdμ. Thus, x → xk factors all orthogonally additive polynomials through some linear form μ. We show that no such linearization is possible without homogeneity. However, we also show that every orthogonally additive holomorphic function of bounded type f over C(K) is of the form f(x)=∫Kh(x)dμ for some μ and holomorphic h : C (K) → L1(μ) of bounded type.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
HOLOMORPHIC FUNCTIONS OVER C(K)
INTEGRAL REPRESENTATION
ORTHOGONALLY ADDITIVE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98725
Ver los metadatos del registro completo
id |
CONICETDig_0d2d8880d31620c5f9e16ebc985ec3f8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98725 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Orthogonally additive holomorphic functions of bounded type over C(K)Carando, Daniel GermánLassalle, Silvia BeatrizZalduendo, Ignacio MartinHOLOMORPHIC FUNCTIONS OVER C(K)INTEGRAL REPRESENTATIONORTHOGONALLY ADDITIVEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is known that all k-homogeneous orthogonally additive polynomials P over C(K) are of the form P(x)= ∫Kxkdμ. Thus, x → xk factors all orthogonally additive polynomials through some linear form μ. We show that no such linearization is possible without homogeneity. However, we also show that every orthogonally additive holomorphic function of bounded type f over C(K) is of the form f(x)=∫Kh(x)dμ for some μ and holomorphic h : C (K) → L1(μ) of bounded type.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaCambridge University Press2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98725Carando, Daniel Germán; Lassalle, Silvia Beatriz; Zalduendo, Ignacio Martin; Orthogonally additive holomorphic functions of bounded type over C(K); Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 53; 3; 10-2010; 609-6180013-0915CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/orthogonally-additive-holomorphic-functions-of-bounded-type-over-ck/B9719DF1CC1E0AB4274182C32428050Dinfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091509000248info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:02:07Zoai:ri.conicet.gov.ar:11336/98725instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:02:07.677CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Orthogonally additive holomorphic functions of bounded type over C(K) |
title |
Orthogonally additive holomorphic functions of bounded type over C(K) |
spellingShingle |
Orthogonally additive holomorphic functions of bounded type over C(K) Carando, Daniel Germán HOLOMORPHIC FUNCTIONS OVER C(K) INTEGRAL REPRESENTATION ORTHOGONALLY ADDITIVE |
title_short |
Orthogonally additive holomorphic functions of bounded type over C(K) |
title_full |
Orthogonally additive holomorphic functions of bounded type over C(K) |
title_fullStr |
Orthogonally additive holomorphic functions of bounded type over C(K) |
title_full_unstemmed |
Orthogonally additive holomorphic functions of bounded type over C(K) |
title_sort |
Orthogonally additive holomorphic functions of bounded type over C(K) |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Lassalle, Silvia Beatriz Zalduendo, Ignacio Martin |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Lassalle, Silvia Beatriz Zalduendo, Ignacio Martin |
author_role |
author |
author2 |
Lassalle, Silvia Beatriz Zalduendo, Ignacio Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HOLOMORPHIC FUNCTIONS OVER C(K) INTEGRAL REPRESENTATION ORTHOGONALLY ADDITIVE |
topic |
HOLOMORPHIC FUNCTIONS OVER C(K) INTEGRAL REPRESENTATION ORTHOGONALLY ADDITIVE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is known that all k-homogeneous orthogonally additive polynomials P over C(K) are of the form P(x)= ∫Kxkdμ. Thus, x → xk factors all orthogonally additive polynomials through some linear form μ. We show that no such linearization is possible without homogeneity. However, we also show that every orthogonally additive holomorphic function of bounded type f over C(K) is of the form f(x)=∫Kh(x)dμ for some μ and holomorphic h : C (K) → L1(μ) of bounded type. Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
description |
It is known that all k-homogeneous orthogonally additive polynomials P over C(K) are of the form P(x)= ∫Kxkdμ. Thus, x → xk factors all orthogonally additive polynomials through some linear form μ. We show that no such linearization is possible without homogeneity. However, we also show that every orthogonally additive holomorphic function of bounded type f over C(K) is of the form f(x)=∫Kh(x)dμ for some μ and holomorphic h : C (K) → L1(μ) of bounded type. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98725 Carando, Daniel Germán; Lassalle, Silvia Beatriz; Zalduendo, Ignacio Martin; Orthogonally additive holomorphic functions of bounded type over C(K); Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 53; 3; 10-2010; 609-618 0013-0915 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98725 |
identifier_str_mv |
Carando, Daniel Germán; Lassalle, Silvia Beatriz; Zalduendo, Ignacio Martin; Orthogonally additive holomorphic functions of bounded type over C(K); Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 53; 3; 10-2010; 609-618 0013-0915 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/orthogonally-additive-holomorphic-functions-of-bounded-type-over-ck/B9719DF1CC1E0AB4274182C32428050D info:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091509000248 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083162417922048 |
score |
13.22299 |