Application of multifractal analysis to segmentation of water bodies in optical satellite images
- Autores
- San Martin, Victor Manuel; Figliola, Maria Alejandra
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the characteristics of multifractal spectra obtained for remote sensing images through the coarse theory and propose a method for segmentation of water bodies based on it. In the first place, spectra of self-similar images created with Iterated Function Systems are calculated and compared with their statistical spectra. Then, optical remote sensing images are studied, emphasizing the differences between their spectra and those obtained for synthetic images. Attention is focused on the concavity of real image spectra and on its interpretation in terms of the analyzed images. This led us to the proposition of a segmentation method for water bodies. The method is tested and the results are compared with water masks of the regions under study. Comments are made about the limitations of the proposed method.
Fil: San Martin, Victor Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Figliola, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
MULTIFRACTAL ANALYSIS
REMOTE SENSING IMAGES
SEGMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75219
Ver los metadatos del registro completo
id |
CONICETDig_26fae899a130cfba06a0a0ceacc289d4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75219 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of multifractal analysis to segmentation of water bodies in optical satellite imagesSan Martin, Victor ManuelFigliola, Maria AlejandraMULTIFRACTAL ANALYSISREMOTE SENSING IMAGESSEGMENTATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the characteristics of multifractal spectra obtained for remote sensing images through the coarse theory and propose a method for segmentation of water bodies based on it. In the first place, spectra of self-similar images created with Iterated Function Systems are calculated and compared with their statistical spectra. Then, optical remote sensing images are studied, emphasizing the differences between their spectra and those obtained for synthetic images. Attention is focused on the concavity of real image spectra and on its interpretation in terms of the analyzed images. This led us to the proposition of a segmentation method for water bodies. The method is tested and the results are compared with water masks of the regions under study. Comments are made about the limitations of the proposed method.Fil: San Martin, Victor Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Figliola, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaPaper in Physics2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75219San Martin, Victor Manuel; Figliola, Maria Alejandra; Application of multifractal analysis to segmentation of water bodies in optical satellite images; Paper in Physics; Papers in Physics; 9; 9-2017; 1-141852-4249CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4279/PIP.090007info:eu-repo/semantics/altIdentifier/url/https://www.papersinphysics.org/papersinphysics/article/view/395info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:10Zoai:ri.conicet.gov.ar:11336/75219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:10.771CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of multifractal analysis to segmentation of water bodies in optical satellite images |
title |
Application of multifractal analysis to segmentation of water bodies in optical satellite images |
spellingShingle |
Application of multifractal analysis to segmentation of water bodies in optical satellite images San Martin, Victor Manuel MULTIFRACTAL ANALYSIS REMOTE SENSING IMAGES SEGMENTATION |
title_short |
Application of multifractal analysis to segmentation of water bodies in optical satellite images |
title_full |
Application of multifractal analysis to segmentation of water bodies in optical satellite images |
title_fullStr |
Application of multifractal analysis to segmentation of water bodies in optical satellite images |
title_full_unstemmed |
Application of multifractal analysis to segmentation of water bodies in optical satellite images |
title_sort |
Application of multifractal analysis to segmentation of water bodies in optical satellite images |
dc.creator.none.fl_str_mv |
San Martin, Victor Manuel Figliola, Maria Alejandra |
author |
San Martin, Victor Manuel |
author_facet |
San Martin, Victor Manuel Figliola, Maria Alejandra |
author_role |
author |
author2 |
Figliola, Maria Alejandra |
author2_role |
author |
dc.subject.none.fl_str_mv |
MULTIFRACTAL ANALYSIS REMOTE SENSING IMAGES SEGMENTATION |
topic |
MULTIFRACTAL ANALYSIS REMOTE SENSING IMAGES SEGMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study the characteristics of multifractal spectra obtained for remote sensing images through the coarse theory and propose a method for segmentation of water bodies based on it. In the first place, spectra of self-similar images created with Iterated Function Systems are calculated and compared with their statistical spectra. Then, optical remote sensing images are studied, emphasizing the differences between their spectra and those obtained for synthetic images. Attention is focused on the concavity of real image spectra and on its interpretation in terms of the analyzed images. This led us to the proposition of a segmentation method for water bodies. The method is tested and the results are compared with water masks of the regions under study. Comments are made about the limitations of the proposed method. Fil: San Martin, Victor Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina Fil: Figliola, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
In this paper, we study the characteristics of multifractal spectra obtained for remote sensing images through the coarse theory and propose a method for segmentation of water bodies based on it. In the first place, spectra of self-similar images created with Iterated Function Systems are calculated and compared with their statistical spectra. Then, optical remote sensing images are studied, emphasizing the differences between their spectra and those obtained for synthetic images. Attention is focused on the concavity of real image spectra and on its interpretation in terms of the analyzed images. This led us to the proposition of a segmentation method for water bodies. The method is tested and the results are compared with water masks of the regions under study. Comments are made about the limitations of the proposed method. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75219 San Martin, Victor Manuel; Figliola, Maria Alejandra; Application of multifractal analysis to segmentation of water bodies in optical satellite images; Paper in Physics; Papers in Physics; 9; 9-2017; 1-14 1852-4249 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75219 |
identifier_str_mv |
San Martin, Victor Manuel; Figliola, Maria Alejandra; Application of multifractal analysis to segmentation of water bodies in optical satellite images; Paper in Physics; Papers in Physics; 9; 9-2017; 1-14 1852-4249 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4279/PIP.090007 info:eu-repo/semantics/altIdentifier/url/https://www.papersinphysics.org/papersinphysics/article/view/395 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Paper in Physics |
publisher.none.fl_str_mv |
Paper in Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613169953112064 |
score |
13.070432 |