Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography
- Autores
- Baravalle, Rodrigo Guillermo; Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; Lu, Yongtao; Gómez, Juan Carlos; Stošić, Borko; Stošić, Tatijana
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Purpose: An adequate understanding of bone structural properties is critical for predicting fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture prevention treatments. In this work we aim to develop multiresolution image analysis techniques to extrapolate high-resolution images predictive power to images taken in clinical conditions. Methods: We performed multifractal analysis (MFA) on a set of 17 ex vivo human vertebrae clinical CT scans. The vertebræ failure loads (FFailure) were experimentally measured. We combined bone mineral density (BMD) with different multifractal dimensions, and BMD with multiresolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict FFailure. Furthermore we obtained short- and long-term precisions from simulated in vivo scans, using a clinical CT scanner. Ground-truth data - high-resolution images - were obtained with a High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner. Results: At the same level of detail, BMD combined with traditional multifractal descriptors (Lipschitz-Hölder exponents), and BMD with monofractal features showed similar prediction powers in predicting FFailure (87%, adj. R2). However, at different levels of details, the prediction power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting multifractal curves, predicts 90% (adj. R2) of FFailure. Conclusions: Compared to monofractal and standard bone measures, multifractal analysis captured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the statistics of multifractal curves can be used in several other contexts, facilitating further research.
Fil: Baravalle, Rodrigo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Thomsen, Felix Sebastian Leo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lu, Yongtao. Dalian University of Technology; China
Fil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Stošić, Borko. Universidade Federal Rural Pernambuco; Brasil
Fil: Stošić, Tatijana. Universidade Federal Rural Pernambuco; Brasil - Materia
-
BONE
FAILURE LOAD
MULTIFRACTAL
THREE-DIMENSIONAL MULTIFRACTAL ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43581
Ver los metadatos del registro completo
| id |
CONICETDig_fcc138f4402591998ee4f94d76084181 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43581 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomographyBaravalle, Rodrigo GuillermoThomsen, Felix Sebastian LeoDelrieux, Claudio AugustoLu, YongtaoGómez, Juan CarlosStošić, BorkoStošić, TatijanaBONEFAILURE LOADMULTIFRACTALTHREE-DIMENSIONAL MULTIFRACTAL ANALYSIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Purpose: An adequate understanding of bone structural properties is critical for predicting fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture prevention treatments. In this work we aim to develop multiresolution image analysis techniques to extrapolate high-resolution images predictive power to images taken in clinical conditions. Methods: We performed multifractal analysis (MFA) on a set of 17 ex vivo human vertebrae clinical CT scans. The vertebræ failure loads (FFailure) were experimentally measured. We combined bone mineral density (BMD) with different multifractal dimensions, and BMD with multiresolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict FFailure. Furthermore we obtained short- and long-term precisions from simulated in vivo scans, using a clinical CT scanner. Ground-truth data - high-resolution images - were obtained with a High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner. Results: At the same level of detail, BMD combined with traditional multifractal descriptors (Lipschitz-Hölder exponents), and BMD with monofractal features showed similar prediction powers in predicting FFailure (87%, adj. R2). However, at different levels of details, the prediction power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting multifractal curves, predicts 90% (adj. R2) of FFailure. Conclusions: Compared to monofractal and standard bone measures, multifractal analysis captured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the statistics of multifractal curves can be used in several other contexts, facilitating further research.Fil: Baravalle, Rodrigo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Thomsen, Felix Sebastian Leo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lu, Yongtao. Dalian University of Technology; ChinaFil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Stošić, Borko. Universidade Federal Rural Pernambuco; BrasilFil: Stošić, Tatijana. Universidade Federal Rural Pernambuco; BrasilAmerican Association of Physicists in Medicine2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43581Baravalle, Rodrigo Guillermo; Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; Lu, Yongtao; Gómez, Juan Carlos; et al.; Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography; American Association of Physicists in Medicine; Medical Physics; 44; 12; 12-2017; 6404-64120094-2405CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mp.12603info:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12603info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:23:56Zoai:ri.conicet.gov.ar:11336/43581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:23:56.697CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography |
| title |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography |
| spellingShingle |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography Baravalle, Rodrigo Guillermo BONE FAILURE LOAD MULTIFRACTAL THREE-DIMENSIONAL MULTIFRACTAL ANALYSIS |
| title_short |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography |
| title_full |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography |
| title_fullStr |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography |
| title_full_unstemmed |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography |
| title_sort |
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography |
| dc.creator.none.fl_str_mv |
Baravalle, Rodrigo Guillermo Thomsen, Felix Sebastian Leo Delrieux, Claudio Augusto Lu, Yongtao Gómez, Juan Carlos Stošić, Borko Stošić, Tatijana |
| author |
Baravalle, Rodrigo Guillermo |
| author_facet |
Baravalle, Rodrigo Guillermo Thomsen, Felix Sebastian Leo Delrieux, Claudio Augusto Lu, Yongtao Gómez, Juan Carlos Stošić, Borko Stošić, Tatijana |
| author_role |
author |
| author2 |
Thomsen, Felix Sebastian Leo Delrieux, Claudio Augusto Lu, Yongtao Gómez, Juan Carlos Stošić, Borko Stošić, Tatijana |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
BONE FAILURE LOAD MULTIFRACTAL THREE-DIMENSIONAL MULTIFRACTAL ANALYSIS |
| topic |
BONE FAILURE LOAD MULTIFRACTAL THREE-DIMENSIONAL MULTIFRACTAL ANALYSIS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Purpose: An adequate understanding of bone structural properties is critical for predicting fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture prevention treatments. In this work we aim to develop multiresolution image analysis techniques to extrapolate high-resolution images predictive power to images taken in clinical conditions. Methods: We performed multifractal analysis (MFA) on a set of 17 ex vivo human vertebrae clinical CT scans. The vertebræ failure loads (FFailure) were experimentally measured. We combined bone mineral density (BMD) with different multifractal dimensions, and BMD with multiresolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict FFailure. Furthermore we obtained short- and long-term precisions from simulated in vivo scans, using a clinical CT scanner. Ground-truth data - high-resolution images - were obtained with a High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner. Results: At the same level of detail, BMD combined with traditional multifractal descriptors (Lipschitz-Hölder exponents), and BMD with monofractal features showed similar prediction powers in predicting FFailure (87%, adj. R2). However, at different levels of details, the prediction power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting multifractal curves, predicts 90% (adj. R2) of FFailure. Conclusions: Compared to monofractal and standard bone measures, multifractal analysis captured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the statistics of multifractal curves can be used in several other contexts, facilitating further research. Fil: Baravalle, Rodrigo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Thomsen, Felix Sebastian Leo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lu, Yongtao. Dalian University of Technology; China Fil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Stošić, Borko. Universidade Federal Rural Pernambuco; Brasil Fil: Stošić, Tatijana. Universidade Federal Rural Pernambuco; Brasil |
| description |
Purpose: An adequate understanding of bone structural properties is critical for predicting fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture prevention treatments. In this work we aim to develop multiresolution image analysis techniques to extrapolate high-resolution images predictive power to images taken in clinical conditions. Methods: We performed multifractal analysis (MFA) on a set of 17 ex vivo human vertebrae clinical CT scans. The vertebræ failure loads (FFailure) were experimentally measured. We combined bone mineral density (BMD) with different multifractal dimensions, and BMD with multiresolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict FFailure. Furthermore we obtained short- and long-term precisions from simulated in vivo scans, using a clinical CT scanner. Ground-truth data - high-resolution images - were obtained with a High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner. Results: At the same level of detail, BMD combined with traditional multifractal descriptors (Lipschitz-Hölder exponents), and BMD with monofractal features showed similar prediction powers in predicting FFailure (87%, adj. R2). However, at different levels of details, the prediction power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting multifractal curves, predicts 90% (adj. R2) of FFailure. Conclusions: Compared to monofractal and standard bone measures, multifractal analysis captured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the statistics of multifractal curves can be used in several other contexts, facilitating further research. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43581 Baravalle, Rodrigo Guillermo; Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; Lu, Yongtao; Gómez, Juan Carlos; et al.; Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography; American Association of Physicists in Medicine; Medical Physics; 44; 12; 12-2017; 6404-6412 0094-2405 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/43581 |
| identifier_str_mv |
Baravalle, Rodrigo Guillermo; Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; Lu, Yongtao; Gómez, Juan Carlos; et al.; Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography; American Association of Physicists in Medicine; Medical Physics; 44; 12; 12-2017; 6404-6412 0094-2405 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/mp.12603 info:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12603 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Association of Physicists in Medicine |
| publisher.none.fl_str_mv |
American Association of Physicists in Medicine |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781772691406848 |
| score |
12.982451 |