Bread crumb classification using fractal and multifractal features

Autores
Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Adequate image descriptors are fundamental in image classification and object recognition. Main requirements for image features are robustness and low dimensionality which would lead to low classification errors in a variety of situations and with a reasonable computational cost. In this context, the identification of materials poses a significant challenge, since typical (geometric and/or differential) feature extraction methods are not robust enough. Texture features based on Fourier or wavelet transforms, on the other hand, do withstand geometric and illumination variations, but tend to require a high amount of descriptors to perform adequately. Recently, the theory of fractal sets has shown to provide local image features that are both robust and low-dimensional. In this work we apply fractal and multifractal feature extraction techniques for bread crumb classification based on colour scans of slices of different bread types. Preliminary results show that fractal based classification is able to distinguish different bread crumbs with very high accuracy.
Fil: Baravalle, Rodrigo Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina
Fil: Gómez, Juan Carlos. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Materia
Fractal
Multifractal
Classification
Bread Crumb
Support Vector Machines
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15167

id CONICETDig_76bef563d1380bbe9a7c72b449b83f06
oai_identifier_str oai:ri.conicet.gov.ar:11336/15167
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bread crumb classification using fractal and multifractal featuresBaravalle, Rodrigo GuillermoDelrieux, Claudio AugustoGómez, Juan CarlosFractalMultifractalClassificationBread CrumbSupport Vector Machineshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Adequate image descriptors are fundamental in image classification and object recognition. Main requirements for image features are robustness and low dimensionality which would lead to low classification errors in a variety of situations and with a reasonable computational cost. In this context, the identification of materials poses a significant challenge, since typical (geometric and/or differential) feature extraction methods are not robust enough. Texture features based on Fourier or wavelet transforms, on the other hand, do withstand geometric and illumination variations, but tend to require a high amount of descriptors to perform adequately. Recently, the theory of fractal sets has shown to provide local image features that are both robust and low-dimensional. In this work we apply fractal and multifractal feature extraction techniques for bread crumb classification based on colour scans of slices of different bread types. Preliminary results show that fractal based classification is able to distinguish different bread crumbs with very high accuracy.Fil: Baravalle, Rodrigo Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; ArgentinaFil: Gómez, Juan Carlos. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15167Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Bread crumb classification using fractal and multifractal features; Mecanica Computacional; XXXI; 17; 11-2012; 3013-30251666-6070enginfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4237info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:10Zoai:ri.conicet.gov.ar:11336/15167instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:11.175CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bread crumb classification using fractal and multifractal features
title Bread crumb classification using fractal and multifractal features
spellingShingle Bread crumb classification using fractal and multifractal features
Baravalle, Rodrigo Guillermo
Fractal
Multifractal
Classification
Bread Crumb
Support Vector Machines
title_short Bread crumb classification using fractal and multifractal features
title_full Bread crumb classification using fractal and multifractal features
title_fullStr Bread crumb classification using fractal and multifractal features
title_full_unstemmed Bread crumb classification using fractal and multifractal features
title_sort Bread crumb classification using fractal and multifractal features
dc.creator.none.fl_str_mv Baravalle, Rodrigo Guillermo
Delrieux, Claudio Augusto
Gómez, Juan Carlos
author Baravalle, Rodrigo Guillermo
author_facet Baravalle, Rodrigo Guillermo
Delrieux, Claudio Augusto
Gómez, Juan Carlos
author_role author
author2 Delrieux, Claudio Augusto
Gómez, Juan Carlos
author2_role author
author
dc.subject.none.fl_str_mv Fractal
Multifractal
Classification
Bread Crumb
Support Vector Machines
topic Fractal
Multifractal
Classification
Bread Crumb
Support Vector Machines
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Adequate image descriptors are fundamental in image classification and object recognition. Main requirements for image features are robustness and low dimensionality which would lead to low classification errors in a variety of situations and with a reasonable computational cost. In this context, the identification of materials poses a significant challenge, since typical (geometric and/or differential) feature extraction methods are not robust enough. Texture features based on Fourier or wavelet transforms, on the other hand, do withstand geometric and illumination variations, but tend to require a high amount of descriptors to perform adequately. Recently, the theory of fractal sets has shown to provide local image features that are both robust and low-dimensional. In this work we apply fractal and multifractal feature extraction techniques for bread crumb classification based on colour scans of slices of different bread types. Preliminary results show that fractal based classification is able to distinguish different bread crumbs with very high accuracy.
Fil: Baravalle, Rodrigo Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina
Fil: Gómez, Juan Carlos. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
description Adequate image descriptors are fundamental in image classification and object recognition. Main requirements for image features are robustness and low dimensionality which would lead to low classification errors in a variety of situations and with a reasonable computational cost. In this context, the identification of materials poses a significant challenge, since typical (geometric and/or differential) feature extraction methods are not robust enough. Texture features based on Fourier or wavelet transforms, on the other hand, do withstand geometric and illumination variations, but tend to require a high amount of descriptors to perform adequately. Recently, the theory of fractal sets has shown to provide local image features that are both robust and low-dimensional. In this work we apply fractal and multifractal feature extraction techniques for bread crumb classification based on colour scans of slices of different bread types. Preliminary results show that fractal based classification is able to distinguish different bread crumbs with very high accuracy.
publishDate 2012
dc.date.none.fl_str_mv 2012-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15167
Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Bread crumb classification using fractal and multifractal features; Mecanica Computacional; XXXI; 17; 11-2012; 3013-3025
1666-6070
url http://hdl.handle.net/11336/15167
identifier_str_mv Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Bread crumb classification using fractal and multifractal features; Mecanica Computacional; XXXI; 17; 11-2012; 3013-3025
1666-6070
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4237
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269565870931968
score 13.13397