The star and biclique coloring and choosability problems
- Autores
- Groshaus, Marina Esther; Soulignac, Francisco Juan; Terlisky, Pablo Ezequiel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) L- coloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) k-coloring and k-choosability problems are Σp2-complete and IIp3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soulignac, Francisco Juan. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Terlisky, Pablo Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Biclique
Coloring
Choosability Problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84531
Ver los metadatos del registro completo
| id |
CONICETDig_9be1b48a2015d27738775c9d8d240998 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84531 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The star and biclique coloring and choosability problemsGroshaus, Marina EstherSoulignac, Francisco JuanTerlisky, Pablo EzequielBicliqueColoringChoosability Problemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) L- coloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) k-coloring and k-choosability problems are Σp2-complete and IIp3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs.Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soulignac, Francisco Juan. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Terlisky, Pablo Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBrown University2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84531Groshaus, Marina Esther; Soulignac, Francisco Juan; Terlisky, Pablo Ezequiel; The star and biclique coloring and choosability problems; Brown University; Journal of Graph Algorithms and Applications; 18; 3; 5-2014; 347-3831526-1719CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jgaa.info/accepted/2014/GroshausSoulignacTerlisky2014.18.3.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.7155/jgaa.00326info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:44Zoai:ri.conicet.gov.ar:11336/84531instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:44.292CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The star and biclique coloring and choosability problems |
| title |
The star and biclique coloring and choosability problems |
| spellingShingle |
The star and biclique coloring and choosability problems Groshaus, Marina Esther Biclique Coloring Choosability Problems |
| title_short |
The star and biclique coloring and choosability problems |
| title_full |
The star and biclique coloring and choosability problems |
| title_fullStr |
The star and biclique coloring and choosability problems |
| title_full_unstemmed |
The star and biclique coloring and choosability problems |
| title_sort |
The star and biclique coloring and choosability problems |
| dc.creator.none.fl_str_mv |
Groshaus, Marina Esther Soulignac, Francisco Juan Terlisky, Pablo Ezequiel |
| author |
Groshaus, Marina Esther |
| author_facet |
Groshaus, Marina Esther Soulignac, Francisco Juan Terlisky, Pablo Ezequiel |
| author_role |
author |
| author2 |
Soulignac, Francisco Juan Terlisky, Pablo Ezequiel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Biclique Coloring Choosability Problems |
| topic |
Biclique Coloring Choosability Problems |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) L- coloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) k-coloring and k-choosability problems are Σp2-complete and IIp3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs. Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Soulignac, Francisco Juan. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Terlisky, Pablo Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) L- coloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) k-coloring and k-choosability problems are Σp2-complete and IIp3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84531 Groshaus, Marina Esther; Soulignac, Francisco Juan; Terlisky, Pablo Ezequiel; The star and biclique coloring and choosability problems; Brown University; Journal of Graph Algorithms and Applications; 18; 3; 5-2014; 347-383 1526-1719 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/84531 |
| identifier_str_mv |
Groshaus, Marina Esther; Soulignac, Francisco Juan; Terlisky, Pablo Ezequiel; The star and biclique coloring and choosability problems; Brown University; Journal of Graph Algorithms and Applications; 18; 3; 5-2014; 347-383 1526-1719 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://jgaa.info/accepted/2014/GroshausSoulignacTerlisky2014.18.3.pdf info:eu-repo/semantics/altIdentifier/doi/10.7155/jgaa.00326 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Brown University |
| publisher.none.fl_str_mv |
Brown University |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782460487008256 |
| score |
12.982451 |