On star and biclique edge-colorings

Autores
Dantas, Simone; Groshaus, Marina Esther; Guedes, André; Machado, Raphael C. S.; Ries, Bernard; Sasaki, Diana
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edge-coloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K3-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles.
Fil: Dantas, Simone. Universidade Federal Fluminense; Brasil
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guedes, André. Universidade Federal do Paraná; Brasil
Fil: Machado, Raphael C. S.. Instituto Nacional de Metrologia, Qualidade e Tecnologia ; Brasil
Fil: Ries, Bernard. University of Fribourg; Suiza
Fil: Sasaki, Diana. Universidade Federal do Rio de Janeiro; Brasil
Materia
Biclique Edge-Coloring
Np-Hard
Star Edge-Coloring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59964

id CONICETDig_dc475025cd25a11ce754cca9e718a12c
oai_identifier_str oai:ri.conicet.gov.ar:11336/59964
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On star and biclique edge-coloringsDantas, SimoneGroshaus, Marina EstherGuedes, AndréMachado, Raphael C. S.Ries, BernardSasaki, DianaBiclique Edge-ColoringNp-HardStar Edge-Coloringhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edge-coloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K3-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles.Fil: Dantas, Simone. Universidade Federal Fluminense; BrasilFil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guedes, André. Universidade Federal do Paraná; BrasilFil: Machado, Raphael C. S.. Instituto Nacional de Metrologia, Qualidade e Tecnologia ; BrasilFil: Ries, Bernard. University of Fribourg; SuizaFil: Sasaki, Diana. Universidade Federal do Rio de Janeiro; BrasilWiley2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59964Dantas, Simone; Groshaus, Marina Esther; Guedes, André; Machado, Raphael C. S.; Ries, Bernard; et al.; On star and biclique edge-colorings; Wiley; International Transactions in Operational Research; 24; 1-2; 1-2017; 339-3460969-6016CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/itor.12307info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/itor.12307info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:27Zoai:ri.conicet.gov.ar:11336/59964instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:28.062CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On star and biclique edge-colorings
title On star and biclique edge-colorings
spellingShingle On star and biclique edge-colorings
Dantas, Simone
Biclique Edge-Coloring
Np-Hard
Star Edge-Coloring
title_short On star and biclique edge-colorings
title_full On star and biclique edge-colorings
title_fullStr On star and biclique edge-colorings
title_full_unstemmed On star and biclique edge-colorings
title_sort On star and biclique edge-colorings
dc.creator.none.fl_str_mv Dantas, Simone
Groshaus, Marina Esther
Guedes, André
Machado, Raphael C. S.
Ries, Bernard
Sasaki, Diana
author Dantas, Simone
author_facet Dantas, Simone
Groshaus, Marina Esther
Guedes, André
Machado, Raphael C. S.
Ries, Bernard
Sasaki, Diana
author_role author
author2 Groshaus, Marina Esther
Guedes, André
Machado, Raphael C. S.
Ries, Bernard
Sasaki, Diana
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Biclique Edge-Coloring
Np-Hard
Star Edge-Coloring
topic Biclique Edge-Coloring
Np-Hard
Star Edge-Coloring
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edge-coloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K3-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles.
Fil: Dantas, Simone. Universidade Federal Fluminense; Brasil
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guedes, André. Universidade Federal do Paraná; Brasil
Fil: Machado, Raphael C. S.. Instituto Nacional de Metrologia, Qualidade e Tecnologia ; Brasil
Fil: Ries, Bernard. University of Fribourg; Suiza
Fil: Sasaki, Diana. Universidade Federal do Rio de Janeiro; Brasil
description A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edge-coloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K3-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59964
Dantas, Simone; Groshaus, Marina Esther; Guedes, André; Machado, Raphael C. S.; Ries, Bernard; et al.; On star and biclique edge-colorings; Wiley; International Transactions in Operational Research; 24; 1-2; 1-2017; 339-346
0969-6016
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59964
identifier_str_mv Dantas, Simone; Groshaus, Marina Esther; Guedes, André; Machado, Raphael C. S.; Ries, Bernard; et al.; On star and biclique edge-colorings; Wiley; International Transactions in Operational Research; 24; 1-2; 1-2017; 339-346
0969-6016
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/itor.12307
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/itor.12307
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269639797637120
score 13.13397