Computing generators of the ideal of a smooth affine algebraic variety

Autores
Blanco, C.; Jeronimo, G.; Solernó, P.
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved.
Fil:Blanco, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Symb. Comput. 2004;38(1):843-872
Materia
Computation of the radical of a regular ideal
Efficient generation of polynomial ideals
Number and degree of generators of polynomial ideals
Regular signs
Straight-line programs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_07477171_v38_n1_p843_Blanco

id BDUBAFCEN_6c3cf812d2da62a7a0155a4679e868e3
oai_identifier_str paperaa:paper_07477171_v38_n1_p843_Blanco
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Computing generators of the ideal of a smooth affine algebraic varietyBlanco, C.Jeronimo, G.Solernó, P.Computation of the radical of a regular idealEfficient generation of polynomial idealsNumber and degree of generators of polynomial idealsRegular signsStraight-line programsLet K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved.Fil:Blanco, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v38_n1_p843_BlancoJ. Symb. Comput. 2004;38(1):843-872reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:17Zpaperaa:paper_07477171_v38_n1_p843_BlancoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:18.953Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Computing generators of the ideal of a smooth affine algebraic variety
title Computing generators of the ideal of a smooth affine algebraic variety
spellingShingle Computing generators of the ideal of a smooth affine algebraic variety
Blanco, C.
Computation of the radical of a regular ideal
Efficient generation of polynomial ideals
Number and degree of generators of polynomial ideals
Regular signs
Straight-line programs
title_short Computing generators of the ideal of a smooth affine algebraic variety
title_full Computing generators of the ideal of a smooth affine algebraic variety
title_fullStr Computing generators of the ideal of a smooth affine algebraic variety
title_full_unstemmed Computing generators of the ideal of a smooth affine algebraic variety
title_sort Computing generators of the ideal of a smooth affine algebraic variety
dc.creator.none.fl_str_mv Blanco, C.
Jeronimo, G.
Solernó, P.
author Blanco, C.
author_facet Blanco, C.
Jeronimo, G.
Solernó, P.
author_role author
author2 Jeronimo, G.
Solernó, P.
author2_role author
author
dc.subject.none.fl_str_mv Computation of the radical of a regular ideal
Efficient generation of polynomial ideals
Number and degree of generators of polynomial ideals
Regular signs
Straight-line programs
topic Computation of the radical of a regular ideal
Efficient generation of polynomial ideals
Number and degree of generators of polynomial ideals
Regular signs
Straight-line programs
dc.description.none.fl_txt_mv Let K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved.
Fil:Blanco, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Let K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_07477171_v38_n1_p843_Blanco
url http://hdl.handle.net/20.500.12110/paper_07477171_v38_n1_p843_Blanco
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Symb. Comput. 2004;38(1):843-872
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142849384448000
score 12.712165