Computing generators of the ideal of a smooth affine algebraic variety
- Autores
- Blanco, C.; Jeronimo, G.; Solernó, P.
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved.
Fil:Blanco, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Symb. Comput. 2004;38(1):843-872
- Materia
-
Computation of the radical of a regular ideal
Efficient generation of polynomial ideals
Number and degree of generators of polynomial ideals
Regular signs
Straight-line programs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_07477171_v38_n1_p843_Blanco
Ver los metadatos del registro completo
id |
BDUBAFCEN_6c3cf812d2da62a7a0155a4679e868e3 |
---|---|
oai_identifier_str |
paperaa:paper_07477171_v38_n1_p843_Blanco |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Computing generators of the ideal of a smooth affine algebraic varietyBlanco, C.Jeronimo, G.Solernó, P.Computation of the radical of a regular idealEfficient generation of polynomial idealsNumber and degree of generators of polynomial idealsRegular signsStraight-line programsLet K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved.Fil:Blanco, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v38_n1_p843_BlancoJ. Symb. Comput. 2004;38(1):843-872reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:17Zpaperaa:paper_07477171_v38_n1_p843_BlancoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:18.953Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Computing generators of the ideal of a smooth affine algebraic variety |
title |
Computing generators of the ideal of a smooth affine algebraic variety |
spellingShingle |
Computing generators of the ideal of a smooth affine algebraic variety Blanco, C. Computation of the radical of a regular ideal Efficient generation of polynomial ideals Number and degree of generators of polynomial ideals Regular signs Straight-line programs |
title_short |
Computing generators of the ideal of a smooth affine algebraic variety |
title_full |
Computing generators of the ideal of a smooth affine algebraic variety |
title_fullStr |
Computing generators of the ideal of a smooth affine algebraic variety |
title_full_unstemmed |
Computing generators of the ideal of a smooth affine algebraic variety |
title_sort |
Computing generators of the ideal of a smooth affine algebraic variety |
dc.creator.none.fl_str_mv |
Blanco, C. Jeronimo, G. Solernó, P. |
author |
Blanco, C. |
author_facet |
Blanco, C. Jeronimo, G. Solernó, P. |
author_role |
author |
author2 |
Jeronimo, G. Solernó, P. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Computation of the radical of a regular ideal Efficient generation of polynomial ideals Number and degree of generators of polynomial ideals Regular signs Straight-line programs |
topic |
Computation of the radical of a regular ideal Efficient generation of polynomial ideals Number and degree of generators of polynomial ideals Regular signs Straight-line programs |
dc.description.none.fl_txt_mv |
Let K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved. Fil:Blanco, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Let K be an algebraically closed field, V ⊂ Kn be a smooth equidimensional algebraic variety and I (V) ⊂ K[x1,...,xn] be the ideal of all polynomials vanishing on V. We show that there exists a system of generators f1,...,fm of I (V) such that m ≤ (n - dim V) (1 + dim V) and deg(fi) ≤ deg V for i = 1,...,m. If char(K) = 0 we present a probabilistic algorithm which computes the generators f1,..., fm from a set-theoretical description of V. If V is given as the common zero locus of s polynomials of degrees bounded by d encoded by straight-line programs of length L, the algorithm obtains the generators of I (V) with error probability bounded by E within complexity s(ndn)O(1)log2 (⌈1/E⌉)L. © 2004 Elsevier Ltd. All rights reserved. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_07477171_v38_n1_p843_Blanco |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v38_n1_p843_Blanco |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Symb. Comput. 2004;38(1):843-872 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142849384448000 |
score |
12.712165 |