Bilinear ideals in operator spaces
- Autores
- Dimant, Veronica Isabel; Fernández Unzueta, Maite
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product.
Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; México - Materia
-
Operator Spaces
Bilinear Mappings
Bilinear Ideals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41880
Ver los metadatos del registro completo
id |
CONICETDig_dce5eab47f6e0caa0de2dfef9c8bf004 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41880 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bilinear ideals in operator spacesDimant, Veronica IsabelFernández Unzueta, MaiteOperator SpacesBilinear MappingsBilinear Idealshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product.Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; MéxicoAcademic Press Inc Elsevier Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41880Dimant, Veronica Isabel; Fernández Unzueta, Maite; Bilinear ideals in operator spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 429; 1; 9-2015; 57-800022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.03.070info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X15003066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:54:10Zoai:ri.conicet.gov.ar:11336/41880instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:54:11.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bilinear ideals in operator spaces |
title |
Bilinear ideals in operator spaces |
spellingShingle |
Bilinear ideals in operator spaces Dimant, Veronica Isabel Operator Spaces Bilinear Mappings Bilinear Ideals |
title_short |
Bilinear ideals in operator spaces |
title_full |
Bilinear ideals in operator spaces |
title_fullStr |
Bilinear ideals in operator spaces |
title_full_unstemmed |
Bilinear ideals in operator spaces |
title_sort |
Bilinear ideals in operator spaces |
dc.creator.none.fl_str_mv |
Dimant, Veronica Isabel Fernández Unzueta, Maite |
author |
Dimant, Veronica Isabel |
author_facet |
Dimant, Veronica Isabel Fernández Unzueta, Maite |
author_role |
author |
author2 |
Fernández Unzueta, Maite |
author2_role |
author |
dc.subject.none.fl_str_mv |
Operator Spaces Bilinear Mappings Bilinear Ideals |
topic |
Operator Spaces Bilinear Mappings Bilinear Ideals |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product. Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; México |
description |
We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41880 Dimant, Veronica Isabel; Fernández Unzueta, Maite; Bilinear ideals in operator spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 429; 1; 9-2015; 57-80 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/41880 |
identifier_str_mv |
Dimant, Veronica Isabel; Fernández Unzueta, Maite; Bilinear ideals in operator spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 429; 1; 9-2015; 57-80 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.03.070 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X15003066 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083073674838016 |
score |
13.22299 |