Bilinear ideals in operator spaces

Autores
Dimant, Veronica Isabel; Fernández Unzueta, Maite
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product.
Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; México
Materia
Operator Spaces
Bilinear Mappings
Bilinear Ideals
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41880

id CONICETDig_dce5eab47f6e0caa0de2dfef9c8bf004
oai_identifier_str oai:ri.conicet.gov.ar:11336/41880
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bilinear ideals in operator spacesDimant, Veronica IsabelFernández Unzueta, MaiteOperator SpacesBilinear MappingsBilinear Idealshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product.Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; MéxicoAcademic Press Inc Elsevier Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41880Dimant, Veronica Isabel; Fernández Unzueta, Maite; Bilinear ideals in operator spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 429; 1; 9-2015; 57-800022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.03.070info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X15003066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:54:10Zoai:ri.conicet.gov.ar:11336/41880instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:54:11.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bilinear ideals in operator spaces
title Bilinear ideals in operator spaces
spellingShingle Bilinear ideals in operator spaces
Dimant, Veronica Isabel
Operator Spaces
Bilinear Mappings
Bilinear Ideals
title_short Bilinear ideals in operator spaces
title_full Bilinear ideals in operator spaces
title_fullStr Bilinear ideals in operator spaces
title_full_unstemmed Bilinear ideals in operator spaces
title_sort Bilinear ideals in operator spaces
dc.creator.none.fl_str_mv Dimant, Veronica Isabel
Fernández Unzueta, Maite
author Dimant, Veronica Isabel
author_facet Dimant, Veronica Isabel
Fernández Unzueta, Maite
author_role author
author2 Fernández Unzueta, Maite
author2_role author
dc.subject.none.fl_str_mv Operator Spaces
Bilinear Mappings
Bilinear Ideals
topic Operator Spaces
Bilinear Mappings
Bilinear Ideals
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product.
Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; México
description We introduce a concept of bilinear ideal of jointly completely bounded mappings between operator spaces. In particular, we study the bilinear ideals N of completely nuclear, I of completely integral and E of completely extendible bilinear mappings. We also consider the multiplicatively bounded bilinear mappings MB and its symmetrization SMB. We prove some basic properties of them, one of which is the fact that I is naturally identified with the ideal of (linear) completely integral mappings on the injective operator space tensor product.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41880
Dimant, Veronica Isabel; Fernández Unzueta, Maite; Bilinear ideals in operator spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 429; 1; 9-2015; 57-80
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41880
identifier_str_mv Dimant, Veronica Isabel; Fernández Unzueta, Maite; Bilinear ideals in operator spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 429; 1; 9-2015; 57-80
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.03.070
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X15003066
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083073674838016
score 13.22299