Lower complexity bounds for interpolation algorithms
- Autores
- Gimenez, Nardo Ariel; Heintz, Joos Ulrich; Matera, Guillermo; Solernó, Pablo Luis
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce and discuss a new computational model for the HermiteLagrange interpolation with nonlinear classes of polynomial interpolants. We distinguish between an interpolation problem and an algorithm that solves it. Our model includes also coalescence phenomena and captures a large variety of known HermiteLagrange interpolation problems and algorithms. Like in traditional HermiteLagrange interpolation, our model is based on the execution of arithmetic operations (including divisions) in the field where the data (nodes and values) are interpreted and arithmetic operations are counted at unit cost. This leads us to a new view of rational functions and maps defined on arbitrary constructible subsets of complex affine spaces. For this purpose we have to develop new tools in algebraic geometry which themselves are mainly based on Zariski's Main Theorem and the theory of places (or equivalently: valuations). We finish this paper by exhibiting two examples of Lagrange interpolation problems with nonlinear classes of interpolants, which do not admit efficient interpolation algorithms (one of these interpolation problems requires even an exponential quantity of arithmetic operations in terms of the number of the given nodes in order to represent some of the interpolants). In other words, classic Lagrange interpolation algorithms are asymptotically optimal for the solution of these selected interpolation problems and nothing is gained by allowing interpolation algorithms and classes of interpolants to be nonlinear. We show also that classic Lagrange interpolation algorithms are almost optimal for generic nodes and values. This generic data cannot be substantially compressed by using nonlinear techniques. We finish this paper highlighting the close connection of our complexity results in HermiteLagrange interpolation with a modern trend in software engineering: architecture tradeoff analysis methods (ATAM).
Fil: Gimenez, Nardo Ariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Solernó, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
HERMITE--LAGRANGE INTERPOLATION
INTERPOLATION PROBLEM
INTERPOLATION ALGORITHM
COMPUTATIONAL COMPLEXITY
LOWER COMPLEXITY BOUNDS
CONSTRUCTIBLE MAP
RATIONAL MAP
TOPOLOGICALLY ROBUST MAP
GEOMETRICALLY ROBUST MAP
HERMITE--LAGRANGE INTERPOLATION
INTERPOLATION PROBLEM
INTERPOLATION ALGORITHM
COMPUTATIONAL COMPLEXITY
LOWER COMPLEXITY BOUNDS
CONSTRUCTIBLE MAP
RATIONAL MAP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113310
Ver los metadatos del registro completo
id |
CONICETDig_49a8fcab27077189a59a6ec68007176f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113310 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lower complexity bounds for interpolation algorithmsGimenez, Nardo ArielHeintz, Joos UlrichMatera, GuillermoSolernó, Pablo LuisHERMITE--LAGRANGE INTERPOLATIONINTERPOLATION PROBLEMINTERPOLATION ALGORITHMCOMPUTATIONAL COMPLEXITYLOWER COMPLEXITY BOUNDSCONSTRUCTIBLE MAPRATIONAL MAPTOPOLOGICALLY ROBUST MAPGEOMETRICALLY ROBUST MAPHERMITE--LAGRANGE INTERPOLATIONINTERPOLATION PROBLEMINTERPOLATION ALGORITHMCOMPUTATIONAL COMPLEXITYLOWER COMPLEXITY BOUNDSCONSTRUCTIBLE MAPRATIONAL MAPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce and discuss a new computational model for the HermiteLagrange interpolation with nonlinear classes of polynomial interpolants. We distinguish between an interpolation problem and an algorithm that solves it. Our model includes also coalescence phenomena and captures a large variety of known HermiteLagrange interpolation problems and algorithms. Like in traditional HermiteLagrange interpolation, our model is based on the execution of arithmetic operations (including divisions) in the field where the data (nodes and values) are interpreted and arithmetic operations are counted at unit cost. This leads us to a new view of rational functions and maps defined on arbitrary constructible subsets of complex affine spaces. For this purpose we have to develop new tools in algebraic geometry which themselves are mainly based on Zariski's Main Theorem and the theory of places (or equivalently: valuations). We finish this paper by exhibiting two examples of Lagrange interpolation problems with nonlinear classes of interpolants, which do not admit efficient interpolation algorithms (one of these interpolation problems requires even an exponential quantity of arithmetic operations in terms of the number of the given nodes in order to represent some of the interpolants). In other words, classic Lagrange interpolation algorithms are asymptotically optimal for the solution of these selected interpolation problems and nothing is gained by allowing interpolation algorithms and classes of interpolants to be nonlinear. We show also that classic Lagrange interpolation algorithms are almost optimal for generic nodes and values. This generic data cannot be substantially compressed by using nonlinear techniques. We finish this paper highlighting the close connection of our complexity results in HermiteLagrange interpolation with a modern trend in software engineering: architecture tradeoff analysis methods (ATAM).Fil: Gimenez, Nardo Ariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; ArgentinaFil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Solernó, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaAcademic Press Inc Elsevier Science2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113310Gimenez, Nardo Ariel; Heintz, Joos Ulrich; Matera, Guillermo; Solernó, Pablo Luis; Lower complexity bounds for interpolation algorithms; Academic Press Inc Elsevier Science; Journal Of Complexity; 27; 2; 4-2011; 151-1870885-064XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X10000956info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2010.10.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:02Zoai:ri.conicet.gov.ar:11336/113310instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:02.35CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lower complexity bounds for interpolation algorithms |
title |
Lower complexity bounds for interpolation algorithms |
spellingShingle |
Lower complexity bounds for interpolation algorithms Gimenez, Nardo Ariel HERMITE--LAGRANGE INTERPOLATION INTERPOLATION PROBLEM INTERPOLATION ALGORITHM COMPUTATIONAL COMPLEXITY LOWER COMPLEXITY BOUNDS CONSTRUCTIBLE MAP RATIONAL MAP TOPOLOGICALLY ROBUST MAP GEOMETRICALLY ROBUST MAP HERMITE--LAGRANGE INTERPOLATION INTERPOLATION PROBLEM INTERPOLATION ALGORITHM COMPUTATIONAL COMPLEXITY LOWER COMPLEXITY BOUNDS CONSTRUCTIBLE MAP RATIONAL MAP |
title_short |
Lower complexity bounds for interpolation algorithms |
title_full |
Lower complexity bounds for interpolation algorithms |
title_fullStr |
Lower complexity bounds for interpolation algorithms |
title_full_unstemmed |
Lower complexity bounds for interpolation algorithms |
title_sort |
Lower complexity bounds for interpolation algorithms |
dc.creator.none.fl_str_mv |
Gimenez, Nardo Ariel Heintz, Joos Ulrich Matera, Guillermo Solernó, Pablo Luis |
author |
Gimenez, Nardo Ariel |
author_facet |
Gimenez, Nardo Ariel Heintz, Joos Ulrich Matera, Guillermo Solernó, Pablo Luis |
author_role |
author |
author2 |
Heintz, Joos Ulrich Matera, Guillermo Solernó, Pablo Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
HERMITE--LAGRANGE INTERPOLATION INTERPOLATION PROBLEM INTERPOLATION ALGORITHM COMPUTATIONAL COMPLEXITY LOWER COMPLEXITY BOUNDS CONSTRUCTIBLE MAP RATIONAL MAP TOPOLOGICALLY ROBUST MAP GEOMETRICALLY ROBUST MAP HERMITE--LAGRANGE INTERPOLATION INTERPOLATION PROBLEM INTERPOLATION ALGORITHM COMPUTATIONAL COMPLEXITY LOWER COMPLEXITY BOUNDS CONSTRUCTIBLE MAP RATIONAL MAP |
topic |
HERMITE--LAGRANGE INTERPOLATION INTERPOLATION PROBLEM INTERPOLATION ALGORITHM COMPUTATIONAL COMPLEXITY LOWER COMPLEXITY BOUNDS CONSTRUCTIBLE MAP RATIONAL MAP TOPOLOGICALLY ROBUST MAP GEOMETRICALLY ROBUST MAP HERMITE--LAGRANGE INTERPOLATION INTERPOLATION PROBLEM INTERPOLATION ALGORITHM COMPUTATIONAL COMPLEXITY LOWER COMPLEXITY BOUNDS CONSTRUCTIBLE MAP RATIONAL MAP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce and discuss a new computational model for the HermiteLagrange interpolation with nonlinear classes of polynomial interpolants. We distinguish between an interpolation problem and an algorithm that solves it. Our model includes also coalescence phenomena and captures a large variety of known HermiteLagrange interpolation problems and algorithms. Like in traditional HermiteLagrange interpolation, our model is based on the execution of arithmetic operations (including divisions) in the field where the data (nodes and values) are interpreted and arithmetic operations are counted at unit cost. This leads us to a new view of rational functions and maps defined on arbitrary constructible subsets of complex affine spaces. For this purpose we have to develop new tools in algebraic geometry which themselves are mainly based on Zariski's Main Theorem and the theory of places (or equivalently: valuations). We finish this paper by exhibiting two examples of Lagrange interpolation problems with nonlinear classes of interpolants, which do not admit efficient interpolation algorithms (one of these interpolation problems requires even an exponential quantity of arithmetic operations in terms of the number of the given nodes in order to represent some of the interpolants). In other words, classic Lagrange interpolation algorithms are asymptotically optimal for the solution of these selected interpolation problems and nothing is gained by allowing interpolation algorithms and classes of interpolants to be nonlinear. We show also that classic Lagrange interpolation algorithms are almost optimal for generic nodes and values. This generic data cannot be substantially compressed by using nonlinear techniques. We finish this paper highlighting the close connection of our complexity results in HermiteLagrange interpolation with a modern trend in software engineering: architecture tradeoff analysis methods (ATAM). Fil: Gimenez, Nardo Ariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Solernó, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
description |
We introduce and discuss a new computational model for the HermiteLagrange interpolation with nonlinear classes of polynomial interpolants. We distinguish between an interpolation problem and an algorithm that solves it. Our model includes also coalescence phenomena and captures a large variety of known HermiteLagrange interpolation problems and algorithms. Like in traditional HermiteLagrange interpolation, our model is based on the execution of arithmetic operations (including divisions) in the field where the data (nodes and values) are interpreted and arithmetic operations are counted at unit cost. This leads us to a new view of rational functions and maps defined on arbitrary constructible subsets of complex affine spaces. For this purpose we have to develop new tools in algebraic geometry which themselves are mainly based on Zariski's Main Theorem and the theory of places (or equivalently: valuations). We finish this paper by exhibiting two examples of Lagrange interpolation problems with nonlinear classes of interpolants, which do not admit efficient interpolation algorithms (one of these interpolation problems requires even an exponential quantity of arithmetic operations in terms of the number of the given nodes in order to represent some of the interpolants). In other words, classic Lagrange interpolation algorithms are asymptotically optimal for the solution of these selected interpolation problems and nothing is gained by allowing interpolation algorithms and classes of interpolants to be nonlinear. We show also that classic Lagrange interpolation algorithms are almost optimal for generic nodes and values. This generic data cannot be substantially compressed by using nonlinear techniques. We finish this paper highlighting the close connection of our complexity results in HermiteLagrange interpolation with a modern trend in software engineering: architecture tradeoff analysis methods (ATAM). |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113310 Gimenez, Nardo Ariel; Heintz, Joos Ulrich; Matera, Guillermo; Solernó, Pablo Luis; Lower complexity bounds for interpolation algorithms; Academic Press Inc Elsevier Science; Journal Of Complexity; 27; 2; 4-2011; 151-187 0885-064X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113310 |
identifier_str_mv |
Gimenez, Nardo Ariel; Heintz, Joos Ulrich; Matera, Guillermo; Solernó, Pablo Luis; Lower complexity bounds for interpolation algorithms; Academic Press Inc Elsevier Science; Journal Of Complexity; 27; 2; 4-2011; 151-187 0885-064X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X10000956 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2010.10.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268640175456256 |
score |
13.13397 |