Composition of operators in Orlicz spaces

Autores
Bongioanni, Bruno; Harboure, Eleonor Ofelia
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles.
Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
INTERPOLATION
MAXIMAL FUNCTION
ORLICZ SPACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84265

id CONICETDig_dcfa1976a516469021d67dc6074a57b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/84265
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Composition of operators in Orlicz spacesBongioanni, BrunoHarboure, Eleonor OfeliaINTERPOLATIONMAXIMAL FUNCTIONORLICZ SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles.Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaRocky Mt Math Consortium2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84265Bongioanni, Bruno; Harboure, Eleonor Ofelia; Composition of operators in Orlicz spaces; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 38; 1; 12-2008; 41-590035-7596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1216/RMJ-2008-38-1-41info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:55Zoai:ri.conicet.gov.ar:11336/84265instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:55.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Composition of operators in Orlicz spaces
title Composition of operators in Orlicz spaces
spellingShingle Composition of operators in Orlicz spaces
Bongioanni, Bruno
INTERPOLATION
MAXIMAL FUNCTION
ORLICZ SPACE
title_short Composition of operators in Orlicz spaces
title_full Composition of operators in Orlicz spaces
title_fullStr Composition of operators in Orlicz spaces
title_full_unstemmed Composition of operators in Orlicz spaces
title_sort Composition of operators in Orlicz spaces
dc.creator.none.fl_str_mv Bongioanni, Bruno
Harboure, Eleonor Ofelia
author Bongioanni, Bruno
author_facet Bongioanni, Bruno
Harboure, Eleonor Ofelia
author_role author
author2 Harboure, Eleonor Ofelia
author2_role author
dc.subject.none.fl_str_mv INTERPOLATION
MAXIMAL FUNCTION
ORLICZ SPACE
topic INTERPOLATION
MAXIMAL FUNCTION
ORLICZ SPACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles.
Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84265
Bongioanni, Bruno; Harboure, Eleonor Ofelia; Composition of operators in Orlicz spaces; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 38; 1; 12-2008; 41-59
0035-7596
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84265
identifier_str_mv Bongioanni, Bruno; Harboure, Eleonor Ofelia; Composition of operators in Orlicz spaces; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 38; 1; 12-2008; 41-59
0035-7596
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1216/RMJ-2008-38-1-41
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Rocky Mt Math Consortium
publisher.none.fl_str_mv Rocky Mt Math Consortium
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268824435425280
score 13.13397