Composition of operators in Orlicz spaces
- Autores
- Bongioanni, Bruno; Harboure, Eleonor Ofelia
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles.
Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
INTERPOLATION
MAXIMAL FUNCTION
ORLICZ SPACE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84265
Ver los metadatos del registro completo
id |
CONICETDig_dcfa1976a516469021d67dc6074a57b2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84265 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Composition of operators in Orlicz spacesBongioanni, BrunoHarboure, Eleonor OfeliaINTERPOLATIONMAXIMAL FUNCTIONORLICZ SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles.Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaRocky Mt Math Consortium2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84265Bongioanni, Bruno; Harboure, Eleonor Ofelia; Composition of operators in Orlicz spaces; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 38; 1; 12-2008; 41-590035-7596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1216/RMJ-2008-38-1-41info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:55Zoai:ri.conicet.gov.ar:11336/84265instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:55.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Composition of operators in Orlicz spaces |
title |
Composition of operators in Orlicz spaces |
spellingShingle |
Composition of operators in Orlicz spaces Bongioanni, Bruno INTERPOLATION MAXIMAL FUNCTION ORLICZ SPACE |
title_short |
Composition of operators in Orlicz spaces |
title_full |
Composition of operators in Orlicz spaces |
title_fullStr |
Composition of operators in Orlicz spaces |
title_full_unstemmed |
Composition of operators in Orlicz spaces |
title_sort |
Composition of operators in Orlicz spaces |
dc.creator.none.fl_str_mv |
Bongioanni, Bruno Harboure, Eleonor Ofelia |
author |
Bongioanni, Bruno |
author_facet |
Bongioanni, Bruno Harboure, Eleonor Ofelia |
author_role |
author |
author2 |
Harboure, Eleonor Ofelia |
author2_role |
author |
dc.subject.none.fl_str_mv |
INTERPOLATION MAXIMAL FUNCTION ORLICZ SPACE |
topic |
INTERPOLATION MAXIMAL FUNCTION ORLICZ SPACE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles. Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this work we find sharp conditions for boundedness on Orlicz spaces of the composition of j operators, each one being of restricted weak type (p,p) for some p > 1, and of strong type (∞, ∞). Particularly, we find necessary and sufficient conditions to obtain modular inequalities for the j-times composition of the Cesàro maximal function of order α. With this approach we treat a kind of strong maximal function related to Cesàro averages over n-dimensional rectangles. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84265 Bongioanni, Bruno; Harboure, Eleonor Ofelia; Composition of operators in Orlicz spaces; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 38; 1; 12-2008; 41-59 0035-7596 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84265 |
identifier_str_mv |
Bongioanni, Bruno; Harboure, Eleonor Ofelia; Composition of operators in Orlicz spaces; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 38; 1; 12-2008; 41-59 0035-7596 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1216/RMJ-2008-38-1-41 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Rocky Mt Math Consortium |
publisher.none.fl_str_mv |
Rocky Mt Math Consortium |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268824435425280 |
score |
13.13397 |