Symmetric interpolation, Exchange lemma and Sylvester sums.

Autores
Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients.
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Szanto, Agnes. North Carolina State University; Estados Unidos
Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
SUBRESULTANTS
SYLVESTER DOUBLE SUMS
SYMMETRIC LAGRANGE INTERPOLATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55574

id CONICETDig_d1fe965a8ea09af2a087b0edc469af54
oai_identifier_str oai:ri.conicet.gov.ar:11336/55574
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Symmetric interpolation, Exchange lemma and Sylvester sums.Krick, Teresa Elena GenovevaSzanto, AgnesValdettaro, Marcelo AlejandroSUBRESULTANTSSYLVESTER DOUBLE SUMSSYMMETRIC LAGRANGE INTERPOLATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients.Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Szanto, Agnes. North Carolina State University; Estados UnidosFil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55574Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Symmetric interpolation, Exchange lemma and Sylvester sums.; Taylor & Francis; Communications In Algebra; 45; 8; 8-2017; 3231-32500092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2016.1236121info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2016.1236121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:58Zoai:ri.conicet.gov.ar:11336/55574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:58.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Symmetric interpolation, Exchange lemma and Sylvester sums.
title Symmetric interpolation, Exchange lemma and Sylvester sums.
spellingShingle Symmetric interpolation, Exchange lemma and Sylvester sums.
Krick, Teresa Elena Genoveva
SUBRESULTANTS
SYLVESTER DOUBLE SUMS
SYMMETRIC LAGRANGE INTERPOLATION
title_short Symmetric interpolation, Exchange lemma and Sylvester sums.
title_full Symmetric interpolation, Exchange lemma and Sylvester sums.
title_fullStr Symmetric interpolation, Exchange lemma and Sylvester sums.
title_full_unstemmed Symmetric interpolation, Exchange lemma and Sylvester sums.
title_sort Symmetric interpolation, Exchange lemma and Sylvester sums.
dc.creator.none.fl_str_mv Krick, Teresa Elena Genoveva
Szanto, Agnes
Valdettaro, Marcelo Alejandro
author Krick, Teresa Elena Genoveva
author_facet Krick, Teresa Elena Genoveva
Szanto, Agnes
Valdettaro, Marcelo Alejandro
author_role author
author2 Szanto, Agnes
Valdettaro, Marcelo Alejandro
author2_role author
author
dc.subject.none.fl_str_mv SUBRESULTANTS
SYLVESTER DOUBLE SUMS
SYMMETRIC LAGRANGE INTERPOLATION
topic SUBRESULTANTS
SYLVESTER DOUBLE SUMS
SYMMETRIC LAGRANGE INTERPOLATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients.
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Szanto, Agnes. North Carolina State University; Estados Unidos
Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55574
Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Symmetric interpolation, Exchange lemma and Sylvester sums.; Taylor & Francis; Communications In Algebra; 45; 8; 8-2017; 3231-3250
0092-7872
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55574
identifier_str_mv Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Symmetric interpolation, Exchange lemma and Sylvester sums.; Taylor & Francis; Communications In Algebra; 45; 8; 8-2017; 3231-3250
0092-7872
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2016.1236121
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2016.1236121
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268636424699904
score 13.13397