Symmetric interpolation, Exchange lemma and Sylvester sums.
- Autores
- Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients.
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Szanto, Agnes. North Carolina State University; Estados Unidos
Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
SUBRESULTANTS
SYLVESTER DOUBLE SUMS
SYMMETRIC LAGRANGE INTERPOLATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55574
Ver los metadatos del registro completo
id |
CONICETDig_d1fe965a8ea09af2a087b0edc469af54 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55574 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Symmetric interpolation, Exchange lemma and Sylvester sums.Krick, Teresa Elena GenovevaSzanto, AgnesValdettaro, Marcelo AlejandroSUBRESULTANTSSYLVESTER DOUBLE SUMSSYMMETRIC LAGRANGE INTERPOLATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients.Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Szanto, Agnes. North Carolina State University; Estados UnidosFil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55574Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Symmetric interpolation, Exchange lemma and Sylvester sums.; Taylor & Francis; Communications In Algebra; 45; 8; 8-2017; 3231-32500092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2016.1236121info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2016.1236121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:58Zoai:ri.conicet.gov.ar:11336/55574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:58.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Symmetric interpolation, Exchange lemma and Sylvester sums. |
title |
Symmetric interpolation, Exchange lemma and Sylvester sums. |
spellingShingle |
Symmetric interpolation, Exchange lemma and Sylvester sums. Krick, Teresa Elena Genoveva SUBRESULTANTS SYLVESTER DOUBLE SUMS SYMMETRIC LAGRANGE INTERPOLATION |
title_short |
Symmetric interpolation, Exchange lemma and Sylvester sums. |
title_full |
Symmetric interpolation, Exchange lemma and Sylvester sums. |
title_fullStr |
Symmetric interpolation, Exchange lemma and Sylvester sums. |
title_full_unstemmed |
Symmetric interpolation, Exchange lemma and Sylvester sums. |
title_sort |
Symmetric interpolation, Exchange lemma and Sylvester sums. |
dc.creator.none.fl_str_mv |
Krick, Teresa Elena Genoveva Szanto, Agnes Valdettaro, Marcelo Alejandro |
author |
Krick, Teresa Elena Genoveva |
author_facet |
Krick, Teresa Elena Genoveva Szanto, Agnes Valdettaro, Marcelo Alejandro |
author_role |
author |
author2 |
Szanto, Agnes Valdettaro, Marcelo Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
SUBRESULTANTS SYLVESTER DOUBLE SUMS SYMMETRIC LAGRANGE INTERPOLATION |
topic |
SUBRESULTANTS SYLVESTER DOUBLE SUMS SYMMETRIC LAGRANGE INTERPOLATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Szanto, Agnes. North Carolina State University; Estados Unidos Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55574 Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Symmetric interpolation, Exchange lemma and Sylvester sums.; Taylor & Francis; Communications In Algebra; 45; 8; 8-2017; 3231-3250 0092-7872 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55574 |
identifier_str_mv |
Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Symmetric interpolation, Exchange lemma and Sylvester sums.; Taylor & Francis; Communications In Algebra; 45; 8; 8-2017; 3231-3250 0092-7872 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2016.1236121 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2016.1236121 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268636424699904 |
score |
13.13397 |