On algebras of holomorphic functions of a given type

Autores
Muro, S.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2012;389(2):792-811
Materia
Fréchet algebras
Holomorphy types
Polynomial ideals
Riemann domains
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v389_n2_p792_Muro

id BDUBAFCEN_0d6ce92bae995343363c6561c3ecf3d5
oai_identifier_str paperaa:paper_0022247X_v389_n2_p792_Muro
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling On algebras of holomorphic functions of a given typeMuro, S.Fréchet algebrasHolomorphy typesPolynomial idealsRiemann domainsWe show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_MuroJ. Math. Anal. Appl. 2012;389(2):792-811reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_0022247X_v389_n2_p792_MuroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.662Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv On algebras of holomorphic functions of a given type
title On algebras of holomorphic functions of a given type
spellingShingle On algebras of holomorphic functions of a given type
Muro, S.
Fréchet algebras
Holomorphy types
Polynomial ideals
Riemann domains
title_short On algebras of holomorphic functions of a given type
title_full On algebras of holomorphic functions of a given type
title_fullStr On algebras of holomorphic functions of a given type
title_full_unstemmed On algebras of holomorphic functions of a given type
title_sort On algebras of holomorphic functions of a given type
dc.creator.none.fl_str_mv Muro, S.
author Muro, S.
author_facet Muro, S.
author_role author
dc.subject.none.fl_str_mv Fréchet algebras
Holomorphy types
Polynomial ideals
Riemann domains
topic Fréchet algebras
Holomorphy types
Polynomial ideals
Riemann domains
dc.description.none.fl_txt_mv We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro
url http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2012;389(2):792-811
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618733175177216
score 13.070432