On algebras of holomorphic functions of a given type
- Autores
- Muro, S.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2012;389(2):792-811
- Materia
-
Fréchet algebras
Holomorphy types
Polynomial ideals
Riemann domains - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v389_n2_p792_Muro
Ver los metadatos del registro completo
id |
BDUBAFCEN_0d6ce92bae995343363c6561c3ecf3d5 |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v389_n2_p792_Muro |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
On algebras of holomorphic functions of a given typeMuro, S.Fréchet algebrasHolomorphy typesPolynomial idealsRiemann domainsWe show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_MuroJ. Math. Anal. Appl. 2012;389(2):792-811reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_0022247X_v389_n2_p792_MuroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.662Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
On algebras of holomorphic functions of a given type |
title |
On algebras of holomorphic functions of a given type |
spellingShingle |
On algebras of holomorphic functions of a given type Muro, S. Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
title_short |
On algebras of holomorphic functions of a given type |
title_full |
On algebras of holomorphic functions of a given type |
title_fullStr |
On algebras of holomorphic functions of a given type |
title_full_unstemmed |
On algebras of holomorphic functions of a given type |
title_sort |
On algebras of holomorphic functions of a given type |
dc.creator.none.fl_str_mv |
Muro, S. |
author |
Muro, S. |
author_facet |
Muro, S. |
author_role |
author |
dc.subject.none.fl_str_mv |
Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
topic |
Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
dc.description.none.fl_txt_mv |
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc. Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2012;389(2):792-811 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618733175177216 |
score |
13.070432 |