On algebras of holomorphic functions of a given type
- Autores
- Muro, S.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2012;389(2):792-811
- Materia
-
Fréchet algebras
Holomorphy types
Polynomial ideals
Riemann domains - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v389_n2_p792_Muro
Ver los metadatos del registro completo
| id |
BDUBAFCEN_0d6ce92bae995343363c6561c3ecf3d5 |
|---|---|
| oai_identifier_str |
paperaa:paper_0022247X_v389_n2_p792_Muro |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
On algebras of holomorphic functions of a given typeMuro, S.Fréchet algebrasHolomorphy typesPolynomial idealsRiemann domainsWe show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc.Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_MuroJ. Math. Anal. Appl. 2012;389(2):792-811reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:31Zpaperaa:paper_0022247X_v389_n2_p792_MuroInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:34.8Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
On algebras of holomorphic functions of a given type |
| title |
On algebras of holomorphic functions of a given type |
| spellingShingle |
On algebras of holomorphic functions of a given type Muro, S. Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
| title_short |
On algebras of holomorphic functions of a given type |
| title_full |
On algebras of holomorphic functions of a given type |
| title_fullStr |
On algebras of holomorphic functions of a given type |
| title_full_unstemmed |
On algebras of holomorphic functions of a given type |
| title_sort |
On algebras of holomorphic functions of a given type |
| dc.creator.none.fl_str_mv |
Muro, S. |
| author |
Muro, S. |
| author_facet |
Muro, S. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
| topic |
Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
| dc.description.none.fl_txt_mv |
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc. Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2012;389(2):792-811 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046089778757632 |
| score |
13.087074 |