Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case

Autores
Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).
Fil: Cortázar, C.. Pontificia Universidad Católica de Chile; Chile
Fil: Elgueta, M.. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando.
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
Asymptotic Behavior
Nonlocal Diffusion
2 Dimensional Exterior Domains
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18867

id CONICETDig_83df8f08e125bcb32dbb1cf198a8720f
oai_identifier_str oai:ri.conicet.gov.ar:11336/18867
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional caseCortázar, C.Elgueta, M.Quirós, FernandoWolanski, Noemi IreneAsymptotic BehaviorNonlocal Diffusion2 Dimensional Exterior Domainshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).Fil: Cortázar, C.. Pontificia Universidad Católica de Chile; ChileFil: Elgueta, M.. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando.Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier Inc2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18867Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-6100022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.12.021info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15011270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:11:19Zoai:ri.conicet.gov.ar:11336/18867instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:11:19.582CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
title Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
spellingShingle Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
Cortázar, C.
Asymptotic Behavior
Nonlocal Diffusion
2 Dimensional Exterior Domains
title_short Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
title_full Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
title_fullStr Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
title_full_unstemmed Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
title_sort Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
dc.creator.none.fl_str_mv Cortázar, C.
Elgueta, M.
Quirós, Fernando
Wolanski, Noemi Irene
author Cortázar, C.
author_facet Cortázar, C.
Elgueta, M.
Quirós, Fernando
Wolanski, Noemi Irene
author_role author
author2 Elgueta, M.
Quirós, Fernando
Wolanski, Noemi Irene
author2_role author
author
author
dc.subject.none.fl_str_mv Asymptotic Behavior
Nonlocal Diffusion
2 Dimensional Exterior Domains
topic Asymptotic Behavior
Nonlocal Diffusion
2 Dimensional Exterior Domains
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).
Fil: Cortázar, C.. Pontificia Universidad Católica de Chile; Chile
Fil: Elgueta, M.. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando.
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18867
Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-610
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18867
identifier_str_mv Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-610
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.12.021
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15011270
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606443893194752
score 13.001348