Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
- Autores
- Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).
Fil: Cortázar, C.. Pontificia Universidad Católica de Chile; Chile
Fil: Elgueta, M.. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando.
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Asymptotic Behavior
Nonlocal Diffusion
2 Dimensional Exterior Domains - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18867
Ver los metadatos del registro completo
id |
CONICETDig_83df8f08e125bcb32dbb1cf198a8720f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18867 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional caseCortázar, C.Elgueta, M.Quirós, FernandoWolanski, Noemi IreneAsymptotic BehaviorNonlocal Diffusion2 Dimensional Exterior Domainshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).Fil: Cortázar, C.. Pontificia Universidad Católica de Chile; ChileFil: Elgueta, M.. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando.Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier Inc2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18867Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-6100022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.12.021info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15011270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:11:19Zoai:ri.conicet.gov.ar:11336/18867instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:11:19.582CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case |
title |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case |
spellingShingle |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case Cortázar, C. Asymptotic Behavior Nonlocal Diffusion 2 Dimensional Exterior Domains |
title_short |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case |
title_full |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case |
title_fullStr |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case |
title_full_unstemmed |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case |
title_sort |
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case |
dc.creator.none.fl_str_mv |
Cortázar, C. Elgueta, M. Quirós, Fernando Wolanski, Noemi Irene |
author |
Cortázar, C. |
author_facet |
Cortázar, C. Elgueta, M. Quirós, Fernando Wolanski, Noemi Irene |
author_role |
author |
author2 |
Elgueta, M. Quirós, Fernando Wolanski, Noemi Irene |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Asymptotic Behavior Nonlocal Diffusion 2 Dimensional Exterior Domains |
topic |
Asymptotic Behavior Nonlocal Diffusion 2 Dimensional Exterior Domains |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1). Fil: Cortázar, C.. Pontificia Universidad Católica de Chile; Chile Fil: Elgueta, M.. Pontificia Universidad Católica de Chile; Chile Fil: Quirós, Fernando. Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1). |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18867 Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-610 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18867 |
identifier_str_mv |
Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-610 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.12.021 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15011270 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606443893194752 |
score |
13.001348 |