Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
- Autores
- Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, ut = J ∗u −u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on RN \Ω. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation.
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Nonlocal Diffusion
Exterior Domain
Asymptotic Behavior
Matched Asymptotics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19929
Ver los metadatos del registro completo
id |
CONICETDig_4f1f9f79b12d69c04ef1c0a71090fdb2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19929 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with HolesCortázar, CarmenElgueta, ManuelQuirós, FernandoWolanski, Noemi IreneNonlocal DiffusionExterior DomainAsymptotic BehaviorMatched Asymptoticshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, ut = J ∗u −u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on RN \Ω. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation.Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; ChileFil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando. Universidad Autónoma de Madrid; EspañaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19929Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes; Springer; Archive For Rational Mechanics And Analysis; 205; 2; 8-2012; 673-6970003-95271432-0673CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00205-012-0519-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00205-012-0519-2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.1761info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:22Zoai:ri.conicet.gov.ar:11336/19929instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:23.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes |
title |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes |
spellingShingle |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes Cortázar, Carmen Nonlocal Diffusion Exterior Domain Asymptotic Behavior Matched Asymptotics |
title_short |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes |
title_full |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes |
title_fullStr |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes |
title_full_unstemmed |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes |
title_sort |
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes |
dc.creator.none.fl_str_mv |
Cortázar, Carmen Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author |
Cortázar, Carmen |
author_facet |
Cortázar, Carmen Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author_role |
author |
author2 |
Elgueta, Manuel Quirós, Fernando Wolanski, Noemi Irene |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nonlocal Diffusion Exterior Domain Asymptotic Behavior Matched Asymptotics |
topic |
Nonlocal Diffusion Exterior Domain Asymptotic Behavior Matched Asymptotics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, ut = J ∗u −u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on RN \Ω. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation. Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile Fil: Elgueta, Manuel. Pontificia Universidad Católica de Chile; Chile Fil: Quirós, Fernando. Universidad Autónoma de Madrid; España Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, ut = J ∗u −u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on RN \Ω. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19929 Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes; Springer; Archive For Rational Mechanics And Analysis; 205; 2; 8-2012; 673-697 0003-9527 1432-0673 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19929 |
identifier_str_mv |
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes; Springer; Archive For Rational Mechanics And Analysis; 205; 2; 8-2012; 673-697 0003-9527 1432-0673 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00205-012-0519-2 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00205-012-0519-2 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.1761 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268855000367104 |
score |
12.885934 |