On a partly linear autoregressive model with moving average errors
- Autores
- Bianco, Ana Maria; Boente Boente, Graciela Lina
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we generalise the partly linear autoregression model considered in the literature by including moving average errors when we want to allow a large dependence to the past observations. The strong ergodicity of the process is derived. A consistent procedure to estimate the parametric and nonparametric components is provided together with a test statistic that allows to check the presence of a moving average component in the model. Also, a Monte Carlo study is carried out to check the performance of the given proposals.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Ergodicity
Fisher-Consistency
Moving Average Errors
Partly Linear Autoregression
Smoothing Techniques - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16546
Ver los metadatos del registro completo
| id |
CONICETDig_83c9fe3679e69a0d89f9adece2f6a175 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16546 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On a partly linear autoregressive model with moving average errorsBianco, Ana MariaBoente Boente, Graciela LinaErgodicityFisher-ConsistencyMoving Average ErrorsPartly Linear AutoregressionSmoothing Techniqueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we generalise the partly linear autoregression model considered in the literature by including moving average errors when we want to allow a large dependence to the past observations. The strong ergodicity of the process is derived. A consistent procedure to estimate the parametric and nonparametric components is provided together with a test statistic that allows to check the presence of a moving average component in the model. Also, a Monte Carlo study is carried out to check the performance of the given proposals.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16546Bianco, Ana Maria; Boente Boente, Graciela Lina; On a partly linear autoregressive model with moving average errors; Taylor & Francis; Journal Of Nonparametric Statistics; 22; 6; 8-2010; 797-8201048-52521029-0311enginfo:eu-repo/semantics/altIdentifier/doi/10.1080/10485250903469744info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10485250903469744info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:35:49Zoai:ri.conicet.gov.ar:11336/16546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:35:49.517CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On a partly linear autoregressive model with moving average errors |
| title |
On a partly linear autoregressive model with moving average errors |
| spellingShingle |
On a partly linear autoregressive model with moving average errors Bianco, Ana Maria Ergodicity Fisher-Consistency Moving Average Errors Partly Linear Autoregression Smoothing Techniques |
| title_short |
On a partly linear autoregressive model with moving average errors |
| title_full |
On a partly linear autoregressive model with moving average errors |
| title_fullStr |
On a partly linear autoregressive model with moving average errors |
| title_full_unstemmed |
On a partly linear autoregressive model with moving average errors |
| title_sort |
On a partly linear autoregressive model with moving average errors |
| dc.creator.none.fl_str_mv |
Bianco, Ana Maria Boente Boente, Graciela Lina |
| author |
Bianco, Ana Maria |
| author_facet |
Bianco, Ana Maria Boente Boente, Graciela Lina |
| author_role |
author |
| author2 |
Boente Boente, Graciela Lina |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ergodicity Fisher-Consistency Moving Average Errors Partly Linear Autoregression Smoothing Techniques |
| topic |
Ergodicity Fisher-Consistency Moving Average Errors Partly Linear Autoregression Smoothing Techniques |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper, we generalise the partly linear autoregression model considered in the literature by including moving average errors when we want to allow a large dependence to the past observations. The strong ergodicity of the process is derived. A consistent procedure to estimate the parametric and nonparametric components is provided together with a test statistic that allows to check the presence of a moving average component in the model. Also, a Monte Carlo study is carried out to check the performance of the given proposals. Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
In this paper, we generalise the partly linear autoregression model considered in the literature by including moving average errors when we want to allow a large dependence to the past observations. The strong ergodicity of the process is derived. A consistent procedure to estimate the parametric and nonparametric components is provided together with a test statistic that allows to check the presence of a moving average component in the model. Also, a Monte Carlo study is carried out to check the performance of the given proposals. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16546 Bianco, Ana Maria; Boente Boente, Graciela Lina; On a partly linear autoregressive model with moving average errors; Taylor & Francis; Journal Of Nonparametric Statistics; 22; 6; 8-2010; 797-820 1048-5252 1029-0311 |
| url |
http://hdl.handle.net/11336/16546 |
| identifier_str_mv |
Bianco, Ana Maria; Boente Boente, Graciela Lina; On a partly linear autoregressive model with moving average errors; Taylor & Francis; Journal Of Nonparametric Statistics; 22; 6; 8-2010; 797-820 1048-5252 1029-0311 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/10485250903469744 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10485250903469744 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor & Francis |
| publisher.none.fl_str_mv |
Taylor & Francis |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781995077599232 |
| score |
12.982451 |