Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection
- Autores
- Bianco, Ana Maria; Boente Boente, Graciela Lina
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, under a semi-parametric partly linear autoregression model, a family of robust estimators for the autoregression parameter and the autoregression function is studied. The proposed estimators are based on a three-step procedure, in which robust regression estimators and robust smoothing techniques are combined. Asymptotic results on the autoregression estimators are derived. Besides combining robust procedures with M-smoothers, predicted values for the series and detection residuals, which allow to detect anomalous data, are introduced. Robust cross-validation methods to select the smoothing parameter are presented as an alternative to the classical ones, which are sensitive to outlying observations. A Monte Carlo study is conducted to compare the performance of the proposed criteria. Finally, the asymptotic distribution of the autoregression parameter estimator is stated uniformly over the smoothing parameter.
Fil: Bianco, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ASYMPTOTIC PROPERTIES
CROSS-VALIDATION
FILTERING
PARTLY LINEAR AUTOREGRESSION
PREDICTION
RATE OF CONVERGENCE
ROBUST ESTIMATION
SMOOTHING TECHNIQUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125432
Ver los metadatos del registro completo
| id |
CONICETDig_5fac072c464db87e326c3bef00933aaa |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125432 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selectionBianco, Ana MariaBoente Boente, Graciela LinaASYMPTOTIC PROPERTIESCROSS-VALIDATIONFILTERINGPARTLY LINEAR AUTOREGRESSIONPREDICTIONRATE OF CONVERGENCEROBUST ESTIMATIONSMOOTHING TECHNIQUEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, under a semi-parametric partly linear autoregression model, a family of robust estimators for the autoregression parameter and the autoregression function is studied. The proposed estimators are based on a three-step procedure, in which robust regression estimators and robust smoothing techniques are combined. Asymptotic results on the autoregression estimators are derived. Besides combining robust procedures with M-smoothers, predicted values for the series and detection residuals, which allow to detect anomalous data, are introduced. Robust cross-validation methods to select the smoothing parameter are presented as an alternative to the classical ones, which are sensitive to outlying observations. A Monte Carlo study is conducted to compare the performance of the proposed criteria. Finally, the asymptotic distribution of the autoregression parameter estimator is stated uniformly over the smoothing parameter.Fil: Bianco, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWiley Blackwell Publishing, Inc2007-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125432Bianco, Ana Maria; Boente Boente, Graciela Lina; Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection; Wiley Blackwell Publishing, Inc; Journal Of Time Series Analysis; 28; 2; 3-2007; 274-3060143-9782CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1467-9892.2006.00511.xinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.2006.00511.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:38:30Zoai:ri.conicet.gov.ar:11336/125432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:38:30.964CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection |
| title |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection |
| spellingShingle |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection Bianco, Ana Maria ASYMPTOTIC PROPERTIES CROSS-VALIDATION FILTERING PARTLY LINEAR AUTOREGRESSION PREDICTION RATE OF CONVERGENCE ROBUST ESTIMATION SMOOTHING TECHNIQUES |
| title_short |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection |
| title_full |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection |
| title_fullStr |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection |
| title_full_unstemmed |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection |
| title_sort |
Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection |
| dc.creator.none.fl_str_mv |
Bianco, Ana Maria Boente Boente, Graciela Lina |
| author |
Bianco, Ana Maria |
| author_facet |
Bianco, Ana Maria Boente Boente, Graciela Lina |
| author_role |
author |
| author2 |
Boente Boente, Graciela Lina |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
ASYMPTOTIC PROPERTIES CROSS-VALIDATION FILTERING PARTLY LINEAR AUTOREGRESSION PREDICTION RATE OF CONVERGENCE ROBUST ESTIMATION SMOOTHING TECHNIQUES |
| topic |
ASYMPTOTIC PROPERTIES CROSS-VALIDATION FILTERING PARTLY LINEAR AUTOREGRESSION PREDICTION RATE OF CONVERGENCE ROBUST ESTIMATION SMOOTHING TECHNIQUES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this article, under a semi-parametric partly linear autoregression model, a family of robust estimators for the autoregression parameter and the autoregression function is studied. The proposed estimators are based on a three-step procedure, in which robust regression estimators and robust smoothing techniques are combined. Asymptotic results on the autoregression estimators are derived. Besides combining robust procedures with M-smoothers, predicted values for the series and detection residuals, which allow to detect anomalous data, are introduced. Robust cross-validation methods to select the smoothing parameter are presented as an alternative to the classical ones, which are sensitive to outlying observations. A Monte Carlo study is conducted to compare the performance of the proposed criteria. Finally, the asymptotic distribution of the autoregression parameter estimator is stated uniformly over the smoothing parameter. Fil: Bianco, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
In this article, under a semi-parametric partly linear autoregression model, a family of robust estimators for the autoregression parameter and the autoregression function is studied. The proposed estimators are based on a three-step procedure, in which robust regression estimators and robust smoothing techniques are combined. Asymptotic results on the autoregression estimators are derived. Besides combining robust procedures with M-smoothers, predicted values for the series and detection residuals, which allow to detect anomalous data, are introduced. Robust cross-validation methods to select the smoothing parameter are presented as an alternative to the classical ones, which are sensitive to outlying observations. A Monte Carlo study is conducted to compare the performance of the proposed criteria. Finally, the asymptotic distribution of the autoregression parameter estimator is stated uniformly over the smoothing parameter. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125432 Bianco, Ana Maria; Boente Boente, Graciela Lina; Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection; Wiley Blackwell Publishing, Inc; Journal Of Time Series Analysis; 28; 2; 3-2007; 274-306 0143-9782 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/125432 |
| identifier_str_mv |
Bianco, Ana Maria; Boente Boente, Graciela Lina; Robust estimators under a semiparametric partly linear autoregression: asymptotic behavior and bandwidth selection; Wiley Blackwell Publishing, Inc; Journal Of Time Series Analysis; 28; 2; 3-2007; 274-306 0143-9782 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1467-9892.2006.00511.x info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.2006.00511.x |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976882935431168 |
| score |
13.087074 |