Influence function of projection-pursuit principal components for functional data
- Autores
- Bali, Juan Lucas; Boente Boente, Graciela Lina
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions.
Fil: Bali, Juan Lucas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Elliptical Distribution
Fisher-Consistency
Functional Principal Component
Influence Function
Robust Estimation
Smoothing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18939
Ver los metadatos del registro completo
id |
CONICETDig_164af9e5e2ec5ca4112c387a3e11f32b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18939 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Influence function of projection-pursuit principal components for functional dataBali, Juan LucasBoente Boente, Graciela LinaElliptical DistributionFisher-ConsistencyFunctional Principal ComponentInfluence FunctionRobust EstimationSmoothinghttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions.Fil: Bali, Juan Lucas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18939Bali, Juan Lucas; Boente Boente, Graciela Lina; Influence function of projection-pursuit principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 173-1990047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.09.004info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14002012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:11Zoai:ri.conicet.gov.ar:11336/18939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:12.086CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Influence function of projection-pursuit principal components for functional data |
title |
Influence function of projection-pursuit principal components for functional data |
spellingShingle |
Influence function of projection-pursuit principal components for functional data Bali, Juan Lucas Elliptical Distribution Fisher-Consistency Functional Principal Component Influence Function Robust Estimation Smoothing |
title_short |
Influence function of projection-pursuit principal components for functional data |
title_full |
Influence function of projection-pursuit principal components for functional data |
title_fullStr |
Influence function of projection-pursuit principal components for functional data |
title_full_unstemmed |
Influence function of projection-pursuit principal components for functional data |
title_sort |
Influence function of projection-pursuit principal components for functional data |
dc.creator.none.fl_str_mv |
Bali, Juan Lucas Boente Boente, Graciela Lina |
author |
Bali, Juan Lucas |
author_facet |
Bali, Juan Lucas Boente Boente, Graciela Lina |
author_role |
author |
author2 |
Boente Boente, Graciela Lina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Elliptical Distribution Fisher-Consistency Functional Principal Component Influence Function Robust Estimation Smoothing |
topic |
Elliptical Distribution Fisher-Consistency Functional Principal Component Influence Function Robust Estimation Smoothing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions. Fil: Bali, Juan Lucas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18939 Bali, Juan Lucas; Boente Boente, Graciela Lina; Influence function of projection-pursuit principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 173-199 0047-259X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18939 |
identifier_str_mv |
Bali, Juan Lucas; Boente Boente, Graciela Lina; Influence function of projection-pursuit principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 173-199 0047-259X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.09.004 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14002012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614008536039424 |
score |
13.070432 |