Reducing medication errors for adults in hospital settings

Autores
Ciapponi, Agustín; Fernandez Nievas, Simon E; Seijo, Mariana; Rodriguez, Maria Belén; Vietto, Valeria; García Perdomo, Herney A.; Virgilio, Sacha; Fajreldines, Ana V.; Tost, Josep; Rose, Christopher J.; Garcia Elorrio, Ezequiel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Medication errors are preventable events that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the healthcare professional or patient. Medication errors in hospitalised adults may cause harm, additional costs, and even death. Objectives: To determine the effectiveness of interventions to reduce medication errors in adults in hospital settings. Search methods: We searched CENTRAL, MEDLINE, Embase, five other databases and two trials registers on 16 January 2020. Selection criteria: We included randomised controlled trials (RCTs) and interrupted time series (ITS) studies investigating interventions aimed at reducing medication errors in hospitalised adults, compared with usual care or other interventions. Outcome measures included adverse drug events (ADEs), potential ADEs, preventable ADEs, medication errors, mortality, morbidity, length of stay, quality of life and identified/solved discrepancies. We included any hospital setting, such as inpatient care units, outpatient care settings, and accident and emergency departments. Data collection and analysis: We followed the standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care (EPOC) Group. Where necessary, we extracted and reanalysed ITS study data using piecewise linear regression, corrected for autocorrelation and seasonality, where possible. Main results: We included 65 studies: 51 RCTs and 14 ITS studies, involving 110,875 participants. About half of trials gave rise to 'some concerns' for risk of bias during the randomisation process and one-third lacked blinding of outcome assessment. Most ITS studies presented low risk of bias. Most studies came from high-income countries or high-resource settings. Medication reconciliation –the process of comparing a patient's medication orders to the medications that the patient has been taking– was the most common type of intervention studied. Electronic prescribing systems, barcoding for correct administering of medications, organisational changes, feedback on medication errors, education of professionals and improved medication dispensing systems were other interventions studied. Medication reconciliation. Low-certainty evidence suggests that medication reconciliation (MR) versus no-MR may reduce medication errors (odds ratio [OR] 0.55, 95% confidence interval (CI) 0.17 to 1.74; 3 studies; n=379). Compared to no-MR, MR probably reduces ADEs (OR 0.38, 95%CI 0.18 to 0.80; 3 studies, n=1336; moderate-certainty evidence), but has little to no effect on length of stay (mean difference (MD) -0.30 days, 95%CI -1.93 to 1.33 days; 3 studies, n=527) and quality of life (MD -1.51, 95%CI -10.04 to 7.02; 1 study, n=131). Low-certainty evidence suggests that, compared to MR by other professionals, MR by pharmacists may reduce medication errors (OR 0.21, 95%CI 0.09 to 0.48; 8 studies, n=2648) and may increase ADEs (OR 1.34, 95%CI 0.73 to 2.44; 3 studies, n=2873). Compared to MR by other professionals, MR by pharmacists may have little to no effect on length of stay (MD -0.25, 95%CI -1.05 to 0.56; 6 studies, 3983). Moderate-certainty evidence shows that this intervention probably has little to no effect on mortality during hospitalisation (risk ratio (RR) 0.99, 95%CI 0.57 to 1.7; 2 studies, n=1000), and on readmissions at one month (RR 0.93, 95%CI 0.76 to 1.14; 2 studies, n=997); and low-certainty evidence suggests that the intervention may have little to no effect on quality of life (MD 0.00, 95%CI -14.09 to 14.09; 1 study, n=724). Low-certainty evidence suggests that database-assisted MR conducted by pharmacists, versus unassisted MR conducted by pharmacists, may reduce potential ADEs (OR 0.26, 95%CI 0.10 to 0.64; 2 studies, n=3326), and may have no effect on length of stay (MD 1.00, 95%CI -0.17 to 2.17; 1 study, n=311). Low-certainty evidence suggests that MR performed by trained pharmacist technicians, versus pharmacists, may have little to no difference on length of stay (MD -0.30, 95%CI -2.12 to 1.52; 1 study, n=183). However, the CI is compatible with important beneficial and detrimental effects. Low-certainty evidence suggests that MR before admission may increase the identification of discrepancies compared with MR after admission (MD 1.27, 95%CI 0.46 to 2.08; 1 study, n=307). However, the CI is compatible with important beneficial and detrimental effects. Moderate-certainty evidence shows that multimodal interventions probably increase discrepancy resolutions compared to usual care (RR 2.14, 95%CI 1.81 to 2.53; 1 study, n=487). Computerised physician order entry (CPOE)/clinical decision support systems (CDSS). Moderate-certainty evidence shows that CPOE/CDSS probably reduce medication errors compared to paper-based systems (OR 0.74, 95%CI 0.31 to 1.79; 2 studies, n=88). Moderate-certainty evidence shows that, compared with standard CPOE/CDSS, improved CPOE/CDSS probably reduce medication errors (OR 0.85, 95%CI 0.74 to 0.97; 2 studies, n=630). Low-certainty evidence suggests that prioritised alerts provided by CPOE/CDSS may prevent ADEs compared to non-prioritised (inconsequential) alerts (MD 1.98, 95%CI 1.65 to 2.31; 1 study; participant numbers unavailable). Barcode identification of participants/medications. Low-certainty evidence suggests that barcoding may reduce medication errors (OR 0.69, 95%CI 0.59 to 0.79; 2 studies, n=50,545). Reduced working hours. Low-certainty evidence suggests that reduced working hours may reduce serious medication errors (RR 0.83, 95%CI 0.63 to 1.09; 1 study, n=634). However, the CI is compatible with important beneficial and detrimental effects. Feedback on prescribing errors. Low-certainty evidence suggests that feedback on prescribing errors may reduce medication errors (OR 0.47, 95%CI 0.33 to 0.67; 4 studies, n=384). Dispensing system. Low-certainty evidence suggests that dispensing systems in surgical wards may reduce medication errors (OR 0.61, 95%CI 0.47 to 0.79; 2 studies, n=1775). Authors' conclusions: Low- to moderate-certainty evidence suggests that, compared to usual care, medication reconciliation, CPOE/CDSS, barcoding, feedback and dispensing systems in surgical wards may reduce medication errors and ADEs. However, the results are imprecise for some outcomes related to medication reconciliation and CPOE/CDSS. The evidence for other interventions is very uncertain. Powered and methodologically sound studies are needed to address the identified evidence gaps. Innovative, synergistic strategies –including those that involve patients– should also be evaluated.
Fil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Fernandez Nievas, Simon E. No especifíca;
Fil: Seijo, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Rodriguez, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Vietto, Valeria. Instituto Universidad Escuela de Medicina del Hospital Italiano; Argentina
Fil: García Perdomo, Herney A.. Universidad del Valle; Colombia
Fil: Virgilio, Sacha. No especifíca;
Fil: Fajreldines, Ana V.. Universidad Austral; Argentina
Fil: Tost, Josep. No especifíca;
Fil: Rose, Christopher J.. No especifíca;
Fil: Garcia Elorrio, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Materia
MEDICATION ERRORS
HOSPITAL
ADULTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/152367

id CONICETDig_3e03336d3ed2a8b56b7f31248718d0f0
oai_identifier_str oai:ri.conicet.gov.ar:11336/152367
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reducing medication errors for adults in hospital settingsCiapponi, AgustínFernandez Nievas, Simon ESeijo, MarianaRodriguez, Maria BelénVietto, ValeriaGarcía Perdomo, Herney A.Virgilio, SachaFajreldines, Ana V.Tost, JosepRose, Christopher J.Garcia Elorrio, EzequielMEDICATION ERRORSHOSPITALADULTShttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background: Medication errors are preventable events that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the healthcare professional or patient. Medication errors in hospitalised adults may cause harm, additional costs, and even death. Objectives: To determine the effectiveness of interventions to reduce medication errors in adults in hospital settings. Search methods: We searched CENTRAL, MEDLINE, Embase, five other databases and two trials registers on 16 January 2020. Selection criteria: We included randomised controlled trials (RCTs) and interrupted time series (ITS) studies investigating interventions aimed at reducing medication errors in hospitalised adults, compared with usual care or other interventions. Outcome measures included adverse drug events (ADEs), potential ADEs, preventable ADEs, medication errors, mortality, morbidity, length of stay, quality of life and identified/solved discrepancies. We included any hospital setting, such as inpatient care units, outpatient care settings, and accident and emergency departments. Data collection and analysis: We followed the standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care (EPOC) Group. Where necessary, we extracted and reanalysed ITS study data using piecewise linear regression, corrected for autocorrelation and seasonality, where possible. Main results: We included 65 studies: 51 RCTs and 14 ITS studies, involving 110,875 participants. About half of trials gave rise to 'some concerns' for risk of bias during the randomisation process and one-third lacked blinding of outcome assessment. Most ITS studies presented low risk of bias. Most studies came from high-income countries or high-resource settings. Medication reconciliation –the process of comparing a patient's medication orders to the medications that the patient has been taking– was the most common type of intervention studied. Electronic prescribing systems, barcoding for correct administering of medications, organisational changes, feedback on medication errors, education of professionals and improved medication dispensing systems were other interventions studied. Medication reconciliation. Low-certainty evidence suggests that medication reconciliation (MR) versus no-MR may reduce medication errors (odds ratio [OR] 0.55, 95% confidence interval (CI) 0.17 to 1.74; 3 studies; n=379). Compared to no-MR, MR probably reduces ADEs (OR 0.38, 95%CI 0.18 to 0.80; 3 studies, n=1336; moderate-certainty evidence), but has little to no effect on length of stay (mean difference (MD) -0.30 days, 95%CI -1.93 to 1.33 days; 3 studies, n=527) and quality of life (MD -1.51, 95%CI -10.04 to 7.02; 1 study, n=131). Low-certainty evidence suggests that, compared to MR by other professionals, MR by pharmacists may reduce medication errors (OR 0.21, 95%CI 0.09 to 0.48; 8 studies, n=2648) and may increase ADEs (OR 1.34, 95%CI 0.73 to 2.44; 3 studies, n=2873). Compared to MR by other professionals, MR by pharmacists may have little to no effect on length of stay (MD -0.25, 95%CI -1.05 to 0.56; 6 studies, 3983). Moderate-certainty evidence shows that this intervention probably has little to no effect on mortality during hospitalisation (risk ratio (RR) 0.99, 95%CI 0.57 to 1.7; 2 studies, n=1000), and on readmissions at one month (RR 0.93, 95%CI 0.76 to 1.14; 2 studies, n=997); and low-certainty evidence suggests that the intervention may have little to no effect on quality of life (MD 0.00, 95%CI -14.09 to 14.09; 1 study, n=724). Low-certainty evidence suggests that database-assisted MR conducted by pharmacists, versus unassisted MR conducted by pharmacists, may reduce potential ADEs (OR 0.26, 95%CI 0.10 to 0.64; 2 studies, n=3326), and may have no effect on length of stay (MD 1.00, 95%CI -0.17 to 2.17; 1 study, n=311). Low-certainty evidence suggests that MR performed by trained pharmacist technicians, versus pharmacists, may have little to no difference on length of stay (MD -0.30, 95%CI -2.12 to 1.52; 1 study, n=183). However, the CI is compatible with important beneficial and detrimental effects. Low-certainty evidence suggests that MR before admission may increase the identification of discrepancies compared with MR after admission (MD 1.27, 95%CI 0.46 to 2.08; 1 study, n=307). However, the CI is compatible with important beneficial and detrimental effects. Moderate-certainty evidence shows that multimodal interventions probably increase discrepancy resolutions compared to usual care (RR 2.14, 95%CI 1.81 to 2.53; 1 study, n=487). Computerised physician order entry (CPOE)/clinical decision support systems (CDSS). Moderate-certainty evidence shows that CPOE/CDSS probably reduce medication errors compared to paper-based systems (OR 0.74, 95%CI 0.31 to 1.79; 2 studies, n=88). Moderate-certainty evidence shows that, compared with standard CPOE/CDSS, improved CPOE/CDSS probably reduce medication errors (OR 0.85, 95%CI 0.74 to 0.97; 2 studies, n=630). Low-certainty evidence suggests that prioritised alerts provided by CPOE/CDSS may prevent ADEs compared to non-prioritised (inconsequential) alerts (MD 1.98, 95%CI 1.65 to 2.31; 1 study; participant numbers unavailable). Barcode identification of participants/medications. Low-certainty evidence suggests that barcoding may reduce medication errors (OR 0.69, 95%CI 0.59 to 0.79; 2 studies, n=50,545). Reduced working hours. Low-certainty evidence suggests that reduced working hours may reduce serious medication errors (RR 0.83, 95%CI 0.63 to 1.09; 1 study, n=634). However, the CI is compatible with important beneficial and detrimental effects. Feedback on prescribing errors. Low-certainty evidence suggests that feedback on prescribing errors may reduce medication errors (OR 0.47, 95%CI 0.33 to 0.67; 4 studies, n=384). Dispensing system. Low-certainty evidence suggests that dispensing systems in surgical wards may reduce medication errors (OR 0.61, 95%CI 0.47 to 0.79; 2 studies, n=1775). Authors' conclusions: Low- to moderate-certainty evidence suggests that, compared to usual care, medication reconciliation, CPOE/CDSS, barcoding, feedback and dispensing systems in surgical wards may reduce medication errors and ADEs. However, the results are imprecise for some outcomes related to medication reconciliation and CPOE/CDSS. The evidence for other interventions is very uncertain. Powered and methodologically sound studies are needed to address the identified evidence gaps. Innovative, synergistic strategies –including those that involve patients– should also be evaluated.Fil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Fernandez Nievas, Simon E. No especifíca;Fil: Seijo, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Rodriguez, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Vietto, Valeria. Instituto Universidad Escuela de Medicina del Hospital Italiano; ArgentinaFil: García Perdomo, Herney A.. Universidad del Valle; ColombiaFil: Virgilio, Sacha. No especifíca;Fil: Fajreldines, Ana V.. Universidad Austral; ArgentinaFil: Tost, Josep. No especifíca;Fil: Rose, Christopher J.. No especifíca;Fil: Garcia Elorrio, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaJohn Wiley & Sons Inc.2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/152367Ciapponi, Agustín; Fernandez Nievas, Simon E; Seijo, Mariana; Rodriguez, Maria Belén; Vietto, Valeria; et al.; Reducing medication errors for adults in hospital settings; John Wiley & Sons Inc.; Cochrane Database of Systematic Reviews; 2021; 11; 11-2021; 1-2151465-1858CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/14651858.CD009985.pub2info:eu-repo/semantics/altIdentifier/url/https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD009985.pub2/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:47Zoai:ri.conicet.gov.ar:11336/152367instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:48.254CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reducing medication errors for adults in hospital settings
title Reducing medication errors for adults in hospital settings
spellingShingle Reducing medication errors for adults in hospital settings
Ciapponi, Agustín
MEDICATION ERRORS
HOSPITAL
ADULTS
title_short Reducing medication errors for adults in hospital settings
title_full Reducing medication errors for adults in hospital settings
title_fullStr Reducing medication errors for adults in hospital settings
title_full_unstemmed Reducing medication errors for adults in hospital settings
title_sort Reducing medication errors for adults in hospital settings
dc.creator.none.fl_str_mv Ciapponi, Agustín
Fernandez Nievas, Simon E
Seijo, Mariana
Rodriguez, Maria Belén
Vietto, Valeria
García Perdomo, Herney A.
Virgilio, Sacha
Fajreldines, Ana V.
Tost, Josep
Rose, Christopher J.
Garcia Elorrio, Ezequiel
author Ciapponi, Agustín
author_facet Ciapponi, Agustín
Fernandez Nievas, Simon E
Seijo, Mariana
Rodriguez, Maria Belén
Vietto, Valeria
García Perdomo, Herney A.
Virgilio, Sacha
Fajreldines, Ana V.
Tost, Josep
Rose, Christopher J.
Garcia Elorrio, Ezequiel
author_role author
author2 Fernandez Nievas, Simon E
Seijo, Mariana
Rodriguez, Maria Belén
Vietto, Valeria
García Perdomo, Herney A.
Virgilio, Sacha
Fajreldines, Ana V.
Tost, Josep
Rose, Christopher J.
Garcia Elorrio, Ezequiel
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MEDICATION ERRORS
HOSPITAL
ADULTS
topic MEDICATION ERRORS
HOSPITAL
ADULTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Background: Medication errors are preventable events that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the healthcare professional or patient. Medication errors in hospitalised adults may cause harm, additional costs, and even death. Objectives: To determine the effectiveness of interventions to reduce medication errors in adults in hospital settings. Search methods: We searched CENTRAL, MEDLINE, Embase, five other databases and two trials registers on 16 January 2020. Selection criteria: We included randomised controlled trials (RCTs) and interrupted time series (ITS) studies investigating interventions aimed at reducing medication errors in hospitalised adults, compared with usual care or other interventions. Outcome measures included adverse drug events (ADEs), potential ADEs, preventable ADEs, medication errors, mortality, morbidity, length of stay, quality of life and identified/solved discrepancies. We included any hospital setting, such as inpatient care units, outpatient care settings, and accident and emergency departments. Data collection and analysis: We followed the standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care (EPOC) Group. Where necessary, we extracted and reanalysed ITS study data using piecewise linear regression, corrected for autocorrelation and seasonality, where possible. Main results: We included 65 studies: 51 RCTs and 14 ITS studies, involving 110,875 participants. About half of trials gave rise to 'some concerns' for risk of bias during the randomisation process and one-third lacked blinding of outcome assessment. Most ITS studies presented low risk of bias. Most studies came from high-income countries or high-resource settings. Medication reconciliation –the process of comparing a patient's medication orders to the medications that the patient has been taking– was the most common type of intervention studied. Electronic prescribing systems, barcoding for correct administering of medications, organisational changes, feedback on medication errors, education of professionals and improved medication dispensing systems were other interventions studied. Medication reconciliation. Low-certainty evidence suggests that medication reconciliation (MR) versus no-MR may reduce medication errors (odds ratio [OR] 0.55, 95% confidence interval (CI) 0.17 to 1.74; 3 studies; n=379). Compared to no-MR, MR probably reduces ADEs (OR 0.38, 95%CI 0.18 to 0.80; 3 studies, n=1336; moderate-certainty evidence), but has little to no effect on length of stay (mean difference (MD) -0.30 days, 95%CI -1.93 to 1.33 days; 3 studies, n=527) and quality of life (MD -1.51, 95%CI -10.04 to 7.02; 1 study, n=131). Low-certainty evidence suggests that, compared to MR by other professionals, MR by pharmacists may reduce medication errors (OR 0.21, 95%CI 0.09 to 0.48; 8 studies, n=2648) and may increase ADEs (OR 1.34, 95%CI 0.73 to 2.44; 3 studies, n=2873). Compared to MR by other professionals, MR by pharmacists may have little to no effect on length of stay (MD -0.25, 95%CI -1.05 to 0.56; 6 studies, 3983). Moderate-certainty evidence shows that this intervention probably has little to no effect on mortality during hospitalisation (risk ratio (RR) 0.99, 95%CI 0.57 to 1.7; 2 studies, n=1000), and on readmissions at one month (RR 0.93, 95%CI 0.76 to 1.14; 2 studies, n=997); and low-certainty evidence suggests that the intervention may have little to no effect on quality of life (MD 0.00, 95%CI -14.09 to 14.09; 1 study, n=724). Low-certainty evidence suggests that database-assisted MR conducted by pharmacists, versus unassisted MR conducted by pharmacists, may reduce potential ADEs (OR 0.26, 95%CI 0.10 to 0.64; 2 studies, n=3326), and may have no effect on length of stay (MD 1.00, 95%CI -0.17 to 2.17; 1 study, n=311). Low-certainty evidence suggests that MR performed by trained pharmacist technicians, versus pharmacists, may have little to no difference on length of stay (MD -0.30, 95%CI -2.12 to 1.52; 1 study, n=183). However, the CI is compatible with important beneficial and detrimental effects. Low-certainty evidence suggests that MR before admission may increase the identification of discrepancies compared with MR after admission (MD 1.27, 95%CI 0.46 to 2.08; 1 study, n=307). However, the CI is compatible with important beneficial and detrimental effects. Moderate-certainty evidence shows that multimodal interventions probably increase discrepancy resolutions compared to usual care (RR 2.14, 95%CI 1.81 to 2.53; 1 study, n=487). Computerised physician order entry (CPOE)/clinical decision support systems (CDSS). Moderate-certainty evidence shows that CPOE/CDSS probably reduce medication errors compared to paper-based systems (OR 0.74, 95%CI 0.31 to 1.79; 2 studies, n=88). Moderate-certainty evidence shows that, compared with standard CPOE/CDSS, improved CPOE/CDSS probably reduce medication errors (OR 0.85, 95%CI 0.74 to 0.97; 2 studies, n=630). Low-certainty evidence suggests that prioritised alerts provided by CPOE/CDSS may prevent ADEs compared to non-prioritised (inconsequential) alerts (MD 1.98, 95%CI 1.65 to 2.31; 1 study; participant numbers unavailable). Barcode identification of participants/medications. Low-certainty evidence suggests that barcoding may reduce medication errors (OR 0.69, 95%CI 0.59 to 0.79; 2 studies, n=50,545). Reduced working hours. Low-certainty evidence suggests that reduced working hours may reduce serious medication errors (RR 0.83, 95%CI 0.63 to 1.09; 1 study, n=634). However, the CI is compatible with important beneficial and detrimental effects. Feedback on prescribing errors. Low-certainty evidence suggests that feedback on prescribing errors may reduce medication errors (OR 0.47, 95%CI 0.33 to 0.67; 4 studies, n=384). Dispensing system. Low-certainty evidence suggests that dispensing systems in surgical wards may reduce medication errors (OR 0.61, 95%CI 0.47 to 0.79; 2 studies, n=1775). Authors' conclusions: Low- to moderate-certainty evidence suggests that, compared to usual care, medication reconciliation, CPOE/CDSS, barcoding, feedback and dispensing systems in surgical wards may reduce medication errors and ADEs. However, the results are imprecise for some outcomes related to medication reconciliation and CPOE/CDSS. The evidence for other interventions is very uncertain. Powered and methodologically sound studies are needed to address the identified evidence gaps. Innovative, synergistic strategies –including those that involve patients– should also be evaluated.
Fil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Fernandez Nievas, Simon E. No especifíca;
Fil: Seijo, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Rodriguez, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Vietto, Valeria. Instituto Universidad Escuela de Medicina del Hospital Italiano; Argentina
Fil: García Perdomo, Herney A.. Universidad del Valle; Colombia
Fil: Virgilio, Sacha. No especifíca;
Fil: Fajreldines, Ana V.. Universidad Austral; Argentina
Fil: Tost, Josep. No especifíca;
Fil: Rose, Christopher J.. No especifíca;
Fil: Garcia Elorrio, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
description Background: Medication errors are preventable events that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the healthcare professional or patient. Medication errors in hospitalised adults may cause harm, additional costs, and even death. Objectives: To determine the effectiveness of interventions to reduce medication errors in adults in hospital settings. Search methods: We searched CENTRAL, MEDLINE, Embase, five other databases and two trials registers on 16 January 2020. Selection criteria: We included randomised controlled trials (RCTs) and interrupted time series (ITS) studies investigating interventions aimed at reducing medication errors in hospitalised adults, compared with usual care or other interventions. Outcome measures included adverse drug events (ADEs), potential ADEs, preventable ADEs, medication errors, mortality, morbidity, length of stay, quality of life and identified/solved discrepancies. We included any hospital setting, such as inpatient care units, outpatient care settings, and accident and emergency departments. Data collection and analysis: We followed the standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care (EPOC) Group. Where necessary, we extracted and reanalysed ITS study data using piecewise linear regression, corrected for autocorrelation and seasonality, where possible. Main results: We included 65 studies: 51 RCTs and 14 ITS studies, involving 110,875 participants. About half of trials gave rise to 'some concerns' for risk of bias during the randomisation process and one-third lacked blinding of outcome assessment. Most ITS studies presented low risk of bias. Most studies came from high-income countries or high-resource settings. Medication reconciliation –the process of comparing a patient's medication orders to the medications that the patient has been taking– was the most common type of intervention studied. Electronic prescribing systems, barcoding for correct administering of medications, organisational changes, feedback on medication errors, education of professionals and improved medication dispensing systems were other interventions studied. Medication reconciliation. Low-certainty evidence suggests that medication reconciliation (MR) versus no-MR may reduce medication errors (odds ratio [OR] 0.55, 95% confidence interval (CI) 0.17 to 1.74; 3 studies; n=379). Compared to no-MR, MR probably reduces ADEs (OR 0.38, 95%CI 0.18 to 0.80; 3 studies, n=1336; moderate-certainty evidence), but has little to no effect on length of stay (mean difference (MD) -0.30 days, 95%CI -1.93 to 1.33 days; 3 studies, n=527) and quality of life (MD -1.51, 95%CI -10.04 to 7.02; 1 study, n=131). Low-certainty evidence suggests that, compared to MR by other professionals, MR by pharmacists may reduce medication errors (OR 0.21, 95%CI 0.09 to 0.48; 8 studies, n=2648) and may increase ADEs (OR 1.34, 95%CI 0.73 to 2.44; 3 studies, n=2873). Compared to MR by other professionals, MR by pharmacists may have little to no effect on length of stay (MD -0.25, 95%CI -1.05 to 0.56; 6 studies, 3983). Moderate-certainty evidence shows that this intervention probably has little to no effect on mortality during hospitalisation (risk ratio (RR) 0.99, 95%CI 0.57 to 1.7; 2 studies, n=1000), and on readmissions at one month (RR 0.93, 95%CI 0.76 to 1.14; 2 studies, n=997); and low-certainty evidence suggests that the intervention may have little to no effect on quality of life (MD 0.00, 95%CI -14.09 to 14.09; 1 study, n=724). Low-certainty evidence suggests that database-assisted MR conducted by pharmacists, versus unassisted MR conducted by pharmacists, may reduce potential ADEs (OR 0.26, 95%CI 0.10 to 0.64; 2 studies, n=3326), and may have no effect on length of stay (MD 1.00, 95%CI -0.17 to 2.17; 1 study, n=311). Low-certainty evidence suggests that MR performed by trained pharmacist technicians, versus pharmacists, may have little to no difference on length of stay (MD -0.30, 95%CI -2.12 to 1.52; 1 study, n=183). However, the CI is compatible with important beneficial and detrimental effects. Low-certainty evidence suggests that MR before admission may increase the identification of discrepancies compared with MR after admission (MD 1.27, 95%CI 0.46 to 2.08; 1 study, n=307). However, the CI is compatible with important beneficial and detrimental effects. Moderate-certainty evidence shows that multimodal interventions probably increase discrepancy resolutions compared to usual care (RR 2.14, 95%CI 1.81 to 2.53; 1 study, n=487). Computerised physician order entry (CPOE)/clinical decision support systems (CDSS). Moderate-certainty evidence shows that CPOE/CDSS probably reduce medication errors compared to paper-based systems (OR 0.74, 95%CI 0.31 to 1.79; 2 studies, n=88). Moderate-certainty evidence shows that, compared with standard CPOE/CDSS, improved CPOE/CDSS probably reduce medication errors (OR 0.85, 95%CI 0.74 to 0.97; 2 studies, n=630). Low-certainty evidence suggests that prioritised alerts provided by CPOE/CDSS may prevent ADEs compared to non-prioritised (inconsequential) alerts (MD 1.98, 95%CI 1.65 to 2.31; 1 study; participant numbers unavailable). Barcode identification of participants/medications. Low-certainty evidence suggests that barcoding may reduce medication errors (OR 0.69, 95%CI 0.59 to 0.79; 2 studies, n=50,545). Reduced working hours. Low-certainty evidence suggests that reduced working hours may reduce serious medication errors (RR 0.83, 95%CI 0.63 to 1.09; 1 study, n=634). However, the CI is compatible with important beneficial and detrimental effects. Feedback on prescribing errors. Low-certainty evidence suggests that feedback on prescribing errors may reduce medication errors (OR 0.47, 95%CI 0.33 to 0.67; 4 studies, n=384). Dispensing system. Low-certainty evidence suggests that dispensing systems in surgical wards may reduce medication errors (OR 0.61, 95%CI 0.47 to 0.79; 2 studies, n=1775). Authors' conclusions: Low- to moderate-certainty evidence suggests that, compared to usual care, medication reconciliation, CPOE/CDSS, barcoding, feedback and dispensing systems in surgical wards may reduce medication errors and ADEs. However, the results are imprecise for some outcomes related to medication reconciliation and CPOE/CDSS. The evidence for other interventions is very uncertain. Powered and methodologically sound studies are needed to address the identified evidence gaps. Innovative, synergistic strategies –including those that involve patients– should also be evaluated.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/152367
Ciapponi, Agustín; Fernandez Nievas, Simon E; Seijo, Mariana; Rodriguez, Maria Belén; Vietto, Valeria; et al.; Reducing medication errors for adults in hospital settings; John Wiley & Sons Inc.; Cochrane Database of Systematic Reviews; 2021; 11; 11-2021; 1-215
1465-1858
CONICET Digital
CONICET
url http://hdl.handle.net/11336/152367
identifier_str_mv Ciapponi, Agustín; Fernandez Nievas, Simon E; Seijo, Mariana; Rodriguez, Maria Belén; Vietto, Valeria; et al.; Reducing medication errors for adults in hospital settings; John Wiley & Sons Inc.; Cochrane Database of Systematic Reviews; 2021; 11; 11-2021; 1-215
1465-1858
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/14651858.CD009985.pub2
info:eu-repo/semantics/altIdentifier/url/https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD009985.pub2/full
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc.
publisher.none.fl_str_mv John Wiley & Sons Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269542419529728
score 13.13397