Robust inference in generalized partially linear models
- Autores
- Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Asymptotic Properties
Generalized Partly Linear Models
Rate of Convergence
Robust Estimation
Smoothing Techniques
Tests - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15026
Ver los metadatos del registro completo
id |
CONICETDig_d67153753f8d4a3ebc94ae94f2d1895e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15026 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust inference in generalized partially linear modelsBoente Boente, Graciela LinaRodriguez, Daniela AndreaAsymptotic PropertiesGeneralized Partly Linear ModelsRate of ConvergenceRobust EstimationSmoothing TechniquesTestshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical onesFil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15026Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Robust inference in generalized partially linear models; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2942-29660167-9473enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947310002367info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.05.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:14:09Zoai:ri.conicet.gov.ar:11336/15026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:14:10.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust inference in generalized partially linear models |
title |
Robust inference in generalized partially linear models |
spellingShingle |
Robust inference in generalized partially linear models Boente Boente, Graciela Lina Asymptotic Properties Generalized Partly Linear Models Rate of Convergence Robust Estimation Smoothing Techniques Tests |
title_short |
Robust inference in generalized partially linear models |
title_full |
Robust inference in generalized partially linear models |
title_fullStr |
Robust inference in generalized partially linear models |
title_full_unstemmed |
Robust inference in generalized partially linear models |
title_sort |
Robust inference in generalized partially linear models |
dc.creator.none.fl_str_mv |
Boente Boente, Graciela Lina Rodriguez, Daniela Andrea |
author |
Boente Boente, Graciela Lina |
author_facet |
Boente Boente, Graciela Lina Rodriguez, Daniela Andrea |
author_role |
author |
author2 |
Rodriguez, Daniela Andrea |
author2_role |
author |
dc.subject.none.fl_str_mv |
Asymptotic Properties Generalized Partly Linear Models Rate of Convergence Robust Estimation Smoothing Techniques Tests |
topic |
Asymptotic Properties Generalized Partly Linear Models Rate of Convergence Robust Estimation Smoothing Techniques Tests |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15026 Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Robust inference in generalized partially linear models; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2942-2966 0167-9473 |
url |
http://hdl.handle.net/11336/15026 |
identifier_str_mv |
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Robust inference in generalized partially linear models; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2942-2966 0167-9473 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947310002367 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.05.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606477233717248 |
score |
12.990902 |