Robust inference in generalized partially linear models

Autores
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Asymptotic Properties
Generalized Partly Linear Models
Rate of Convergence
Robust Estimation
Smoothing Techniques
Tests
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15026

id CONICETDig_d67153753f8d4a3ebc94ae94f2d1895e
oai_identifier_str oai:ri.conicet.gov.ar:11336/15026
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust inference in generalized partially linear modelsBoente Boente, Graciela LinaRodriguez, Daniela AndreaAsymptotic PropertiesGeneralized Partly Linear ModelsRate of ConvergenceRobust EstimationSmoothing TechniquesTestshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical onesFil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15026Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Robust inference in generalized partially linear models; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2942-29660167-9473enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947310002367info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.05.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:14:09Zoai:ri.conicet.gov.ar:11336/15026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:14:10.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust inference in generalized partially linear models
title Robust inference in generalized partially linear models
spellingShingle Robust inference in generalized partially linear models
Boente Boente, Graciela Lina
Asymptotic Properties
Generalized Partly Linear Models
Rate of Convergence
Robust Estimation
Smoothing Techniques
Tests
title_short Robust inference in generalized partially linear models
title_full Robust inference in generalized partially linear models
title_fullStr Robust inference in generalized partially linear models
title_full_unstemmed Robust inference in generalized partially linear models
title_sort Robust inference in generalized partially linear models
dc.creator.none.fl_str_mv Boente Boente, Graciela Lina
Rodriguez, Daniela Andrea
author Boente Boente, Graciela Lina
author_facet Boente Boente, Graciela Lina
Rodriguez, Daniela Andrea
author_role author
author2 Rodriguez, Daniela Andrea
author2_role author
dc.subject.none.fl_str_mv Asymptotic Properties
Generalized Partly Linear Models
Rate of Convergence
Robust Estimation
Smoothing Techniques
Tests
topic Asymptotic Properties
Generalized Partly Linear Models
Rate of Convergence
Robust Estimation
Smoothing Techniques
Tests
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15026
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Robust inference in generalized partially linear models; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2942-2966
0167-9473
url http://hdl.handle.net/11336/15026
identifier_str_mv Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Robust inference in generalized partially linear models; Elsevier Science; Computational Statistics And Data Analysis; 54; 12; 12-2010; 2942-2966
0167-9473
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947310002367
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2010.05.025
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606477233717248
score 12.990902