Partly linear models on Riemannian manifolds
- Autores
- González Manteiga, Wenceslao; Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In partly linear models, the dependence of the response y on (xT, t) is modeled through the relationship y = xTβ + g(t) + ε, where ε is independent of (xT, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variablest take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study.
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Hypothesis Test
Nonparametric Estimation
Partly Linear Models
Riemannian Manifolds - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19993
Ver los metadatos del registro completo
id |
CONICETDig_bef834c56c8d995ba229a771b97c95c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19993 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Partly linear models on Riemannian manifoldsGonzález Manteiga, WenceslaoHenry, Guillermo SebastianRodriguez, Daniela AndreaHypothesis TestNonparametric EstimationPartly Linear ModelsRiemannian Manifoldshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In partly linear models, the dependence of the response y on (xT, t) is modeled through the relationship y = xTβ + g(t) + ε, where ε is independent of (xT, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variablest take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study.Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; EspañaFil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19993González Manteiga, Wenceslao; Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea; Partly linear models on Riemannian manifolds; Taylor & Francis; Journal of Applied Statistics; 39; 8; 5-2012; 1797-18090266-47631360-0532CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/02664763.2012.683169info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/02664763.2012.683169info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.1573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:05Zoai:ri.conicet.gov.ar:11336/19993instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:06.137CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Partly linear models on Riemannian manifolds |
title |
Partly linear models on Riemannian manifolds |
spellingShingle |
Partly linear models on Riemannian manifolds González Manteiga, Wenceslao Hypothesis Test Nonparametric Estimation Partly Linear Models Riemannian Manifolds |
title_short |
Partly linear models on Riemannian manifolds |
title_full |
Partly linear models on Riemannian manifolds |
title_fullStr |
Partly linear models on Riemannian manifolds |
title_full_unstemmed |
Partly linear models on Riemannian manifolds |
title_sort |
Partly linear models on Riemannian manifolds |
dc.creator.none.fl_str_mv |
González Manteiga, Wenceslao Henry, Guillermo Sebastian Rodriguez, Daniela Andrea |
author |
González Manteiga, Wenceslao |
author_facet |
González Manteiga, Wenceslao Henry, Guillermo Sebastian Rodriguez, Daniela Andrea |
author_role |
author |
author2 |
Henry, Guillermo Sebastian Rodriguez, Daniela Andrea |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hypothesis Test Nonparametric Estimation Partly Linear Models Riemannian Manifolds |
topic |
Hypothesis Test Nonparametric Estimation Partly Linear Models Riemannian Manifolds |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In partly linear models, the dependence of the response y on (xT, t) is modeled through the relationship y = xTβ + g(t) + ε, where ε is independent of (xT, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variablest take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study. Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In partly linear models, the dependence of the response y on (xT, t) is modeled through the relationship y = xTβ + g(t) + ε, where ε is independent of (xT, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variablest take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19993 González Manteiga, Wenceslao; Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea; Partly linear models on Riemannian manifolds; Taylor & Francis; Journal of Applied Statistics; 39; 8; 5-2012; 1797-1809 0266-4763 1360-0532 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19993 |
identifier_str_mv |
González Manteiga, Wenceslao; Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea; Partly linear models on Riemannian manifolds; Taylor & Francis; Journal of Applied Statistics; 39; 8; 5-2012; 1797-1809 0266-4763 1360-0532 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/02664763.2012.683169 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/02664763.2012.683169 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.1573 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981100925747200 |
score |
12.48226 |