Anisotropic regularity for elliptic problems with Dirac measures as data
- Autores
- Ojea, Ignacio
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the Possion problem with singular data given by a source supported on a one dimensional curve strictly contained in a three dimensional domain. We prove regularity results for the solution on isotropic and on anisotropic weighted spaces of Kondratiev type. Our technique is based on the study of a regularized problem. This allows us to exploit the local nature of the singularity. Our results hold with very few smoothness hypotheses on the domain and on the support of the data. We also discuss some extensions of our main results, including the two dimensional case, sources supported on closed curves and on polygonals.
Fil: Ojea, Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
SINGULAR LINE
ANISOTROPY
DIRAC DELTA
SINGULAR DATA
WEIGHTED SOBOLEV SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/234645
Ver los metadatos del registro completo
id |
CONICETDig_81185227d27256e789be5fc72dc67538 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/234645 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anisotropic regularity for elliptic problems with Dirac measures as dataOjea, IgnacioSINGULAR LINEANISOTROPYDIRAC DELTASINGULAR DATAWEIGHTED SOBOLEV SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the Possion problem with singular data given by a source supported on a one dimensional curve strictly contained in a three dimensional domain. We prove regularity results for the solution on isotropic and on anisotropic weighted spaces of Kondratiev type. Our technique is based on the study of a regularized problem. This allows us to exploit the local nature of the singularity. Our results hold with very few smoothness hypotheses on the domain and on the support of the data. We also discuss some extensions of our main results, including the two dimensional case, sources supported on closed curves and on polygonals.Fil: Ojea, Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc.2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234645Ojea, Ignacio; Anisotropic regularity for elliptic problems with Dirac measures as data; Academic Press Inc.; Journal of Mathematical Analysis and Applications; 535; 1; 1-2024; 1-39, 1281041096-0813CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X24000258?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2024.128104info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2306.00930info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:19Zoai:ri.conicet.gov.ar:11336/234645instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:19.619CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anisotropic regularity for elliptic problems with Dirac measures as data |
title |
Anisotropic regularity for elliptic problems with Dirac measures as data |
spellingShingle |
Anisotropic regularity for elliptic problems with Dirac measures as data Ojea, Ignacio SINGULAR LINE ANISOTROPY DIRAC DELTA SINGULAR DATA WEIGHTED SOBOLEV SPACES |
title_short |
Anisotropic regularity for elliptic problems with Dirac measures as data |
title_full |
Anisotropic regularity for elliptic problems with Dirac measures as data |
title_fullStr |
Anisotropic regularity for elliptic problems with Dirac measures as data |
title_full_unstemmed |
Anisotropic regularity for elliptic problems with Dirac measures as data |
title_sort |
Anisotropic regularity for elliptic problems with Dirac measures as data |
dc.creator.none.fl_str_mv |
Ojea, Ignacio |
author |
Ojea, Ignacio |
author_facet |
Ojea, Ignacio |
author_role |
author |
dc.subject.none.fl_str_mv |
SINGULAR LINE ANISOTROPY DIRAC DELTA SINGULAR DATA WEIGHTED SOBOLEV SPACES |
topic |
SINGULAR LINE ANISOTROPY DIRAC DELTA SINGULAR DATA WEIGHTED SOBOLEV SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the Possion problem with singular data given by a source supported on a one dimensional curve strictly contained in a three dimensional domain. We prove regularity results for the solution on isotropic and on anisotropic weighted spaces of Kondratiev type. Our technique is based on the study of a regularized problem. This allows us to exploit the local nature of the singularity. Our results hold with very few smoothness hypotheses on the domain and on the support of the data. We also discuss some extensions of our main results, including the two dimensional case, sources supported on closed curves and on polygonals. Fil: Ojea, Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study the Possion problem with singular data given by a source supported on a one dimensional curve strictly contained in a three dimensional domain. We prove regularity results for the solution on isotropic and on anisotropic weighted spaces of Kondratiev type. Our technique is based on the study of a regularized problem. This allows us to exploit the local nature of the singularity. Our results hold with very few smoothness hypotheses on the domain and on the support of the data. We also discuss some extensions of our main results, including the two dimensional case, sources supported on closed curves and on polygonals. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/234645 Ojea, Ignacio; Anisotropic regularity for elliptic problems with Dirac measures as data; Academic Press Inc.; Journal of Mathematical Analysis and Applications; 535; 1; 1-2024; 1-39, 128104 1096-0813 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/234645 |
identifier_str_mv |
Ojea, Ignacio; Anisotropic regularity for elliptic problems with Dirac measures as data; Academic Press Inc.; Journal of Mathematical Analysis and Applications; 535; 1; 1-2024; 1-39, 128104 1096-0813 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X24000258?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2024.128104 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2306.00930 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc. |
publisher.none.fl_str_mv |
Academic Press Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782228334379008 |
score |
12.982451 |