Extension theorems for external cusps with minimal regularity
- Autores
- Acosta Rodriguez, Gabriel; Ojea, Ignacio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sobolev functions defined on certain simple domains with an isolated sin- gular point (such as power type external cusps) can not be extended in standard, but in appropriate weighted spaces. In this article we show that this result holds for a large class of domains that generalizes external cusps, allowing minimal boundary regularity. The construction of our extension operator is based on a modification of reflection techniques originally de- veloped for dealing with uniform domains. The weight involved in the ex- tension appears as a consequence of the failure of the domain to comply with basic properties of uniform domains, and it turns out to be a quantification of that failure. We show that weighted, rather than standard spaces, can be treated with our approach for weights that are given by a monotonic function either of the distance to the boundary or of the distance to the tip of the cusp.
Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
EXTENSION THEOREMS
EXTERNAL CUSP
WEIGHTED SOBOLEV SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/130092
Ver los metadatos del registro completo
id |
CONICETDig_c76bcf113df61e4dab55b47d7a550a5e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/130092 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extension theorems for external cusps with minimal regularityAcosta Rodriguez, GabrielOjea, IgnacioEXTENSION THEOREMSEXTERNAL CUSPWEIGHTED SOBOLEV SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Sobolev functions defined on certain simple domains with an isolated sin- gular point (such as power type external cusps) can not be extended in standard, but in appropriate weighted spaces. In this article we show that this result holds for a large class of domains that generalizes external cusps, allowing minimal boundary regularity. The construction of our extension operator is based on a modification of reflection techniques originally de- veloped for dealing with uniform domains. The weight involved in the ex- tension appears as a consequence of the failure of the domain to comply with basic properties of uniform domains, and it turns out to be a quantification of that failure. We show that weighted, rather than standard spaces, can be treated with our approach for weights that are given by a monotonic function either of the distance to the boundary or of the distance to the tip of the cusp.Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaPacific Journal Mathematics2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/130092Acosta Rodriguez, Gabriel; Ojea, Ignacio; Extension theorems for external cusps with minimal regularity; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 259; 1; 9-2012; 1-390030-87301945-5844CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://msp.org/pjm/2012/259-1/p01.xhtmlinfo:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2012.259.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:57Zoai:ri.conicet.gov.ar:11336/130092instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:58.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extension theorems for external cusps with minimal regularity |
title |
Extension theorems for external cusps with minimal regularity |
spellingShingle |
Extension theorems for external cusps with minimal regularity Acosta Rodriguez, Gabriel EXTENSION THEOREMS EXTERNAL CUSP WEIGHTED SOBOLEV SPACES |
title_short |
Extension theorems for external cusps with minimal regularity |
title_full |
Extension theorems for external cusps with minimal regularity |
title_fullStr |
Extension theorems for external cusps with minimal regularity |
title_full_unstemmed |
Extension theorems for external cusps with minimal regularity |
title_sort |
Extension theorems for external cusps with minimal regularity |
dc.creator.none.fl_str_mv |
Acosta Rodriguez, Gabriel Ojea, Ignacio |
author |
Acosta Rodriguez, Gabriel |
author_facet |
Acosta Rodriguez, Gabriel Ojea, Ignacio |
author_role |
author |
author2 |
Ojea, Ignacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
EXTENSION THEOREMS EXTERNAL CUSP WEIGHTED SOBOLEV SPACES |
topic |
EXTENSION THEOREMS EXTERNAL CUSP WEIGHTED SOBOLEV SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Sobolev functions defined on certain simple domains with an isolated sin- gular point (such as power type external cusps) can not be extended in standard, but in appropriate weighted spaces. In this article we show that this result holds for a large class of domains that generalizes external cusps, allowing minimal boundary regularity. The construction of our extension operator is based on a modification of reflection techniques originally de- veloped for dealing with uniform domains. The weight involved in the ex- tension appears as a consequence of the failure of the domain to comply with basic properties of uniform domains, and it turns out to be a quantification of that failure. We show that weighted, rather than standard spaces, can be treated with our approach for weights that are given by a monotonic function either of the distance to the boundary or of the distance to the tip of the cusp. Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Sobolev functions defined on certain simple domains with an isolated sin- gular point (such as power type external cusps) can not be extended in standard, but in appropriate weighted spaces. In this article we show that this result holds for a large class of domains that generalizes external cusps, allowing minimal boundary regularity. The construction of our extension operator is based on a modification of reflection techniques originally de- veloped for dealing with uniform domains. The weight involved in the ex- tension appears as a consequence of the failure of the domain to comply with basic properties of uniform domains, and it turns out to be a quantification of that failure. We show that weighted, rather than standard spaces, can be treated with our approach for weights that are given by a monotonic function either of the distance to the boundary or of the distance to the tip of the cusp. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/130092 Acosta Rodriguez, Gabriel; Ojea, Ignacio; Extension theorems for external cusps with minimal regularity; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 259; 1; 9-2012; 1-39 0030-8730 1945-5844 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/130092 |
identifier_str_mv |
Acosta Rodriguez, Gabriel; Ojea, Ignacio; Extension theorems for external cusps with minimal regularity; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 259; 1; 9-2012; 1-39 0030-8730 1945-5844 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://msp.org/pjm/2012/259-1/p01.xhtml info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2012.259.1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pacific Journal Mathematics |
publisher.none.fl_str_mv |
Pacific Journal Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268635688599552 |
score |
13.13397 |