Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields
- Autores
- Yao, Jian-Feng; Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, P.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A motion texture is an instantaneous motion map extracted from a dynamic texture. We observe that such motion maps exhibit values of two types: a discrete component at zero (absence of motion) and continuous motion values. We thus develop a mixed-state Markov random field model to represent motion textures. The core of our approach is to show that motion information is powerful enough to classify and segment dynamic textures if it is properly modeled regarding its specific nature and the local interactions involved. A parsimonious set of 11 parameters constitutes the descriptive feature of a motion texture. The motivation of the proposed formulation runs toward the analysis of dynamic video contents, and we tackle two related problems. First, we present a method for recognition and classification of motion textures, by means of the Kullback-Leibler distance between mixed-state statistical models. Second, we define a two-frame motion texture maximum a posteriori (MAP)-based segmentation method applicable to motion textures with deforming boundaries. We also investigate a new issue, the space-time dynamic texture segmentation, by combining the spatial segmentation and the recognition methods. Numerous experimental results are reported for those three problems which demonstrate the efficiency and accuracy of the proposed two-frame approach.
Fil: Yao, Jian-Feng. The University of Hong Kong. Department of Statistics and Actuarial Science; Hong Kong
Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Bouthemy, P.. Inria, Centre Rennes - Bretagne Atlantique; Francia - Materia
-
Dynamic Textures
Random Fields
Motion Analysis
Mixed-State Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3377
Ver los metadatos del registro completo
id |
CONICETDig_73b46969fe2938689d459540e8668185 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3377 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random FieldsYao, Jian-FengCrivelli, TomásCernuschi Frias, BrunoBouthemy, P.Dynamic TexturesRandom FieldsMotion AnalysisMixed-State Modelshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A motion texture is an instantaneous motion map extracted from a dynamic texture. We observe that such motion maps exhibit values of two types: a discrete component at zero (absence of motion) and continuous motion values. We thus develop a mixed-state Markov random field model to represent motion textures. The core of our approach is to show that motion information is powerful enough to classify and segment dynamic textures if it is properly modeled regarding its specific nature and the local interactions involved. A parsimonious set of 11 parameters constitutes the descriptive feature of a motion texture. The motivation of the proposed formulation runs toward the analysis of dynamic video contents, and we tackle two related problems. First, we present a method for recognition and classification of motion textures, by means of the Kullback-Leibler distance between mixed-state statistical models. Second, we define a two-frame motion texture maximum a posteriori (MAP)-based segmentation method applicable to motion textures with deforming boundaries. We also investigate a new issue, the space-time dynamic texture segmentation, by combining the spatial segmentation and the recognition methods. Numerous experimental results are reported for those three problems which demonstrate the efficiency and accuracy of the proposed two-frame approach.Fil: Yao, Jian-Feng. The University of Hong Kong. Department of Statistics and Actuarial Science; Hong KongFil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaFil: Bouthemy, P.. Inria, Centre Rennes - Bretagne Atlantique; FranciaSIAM2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3377Yao, Jian-Feng ; Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, P.; Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields; SIAM; SIAM Journal On Imaging Sciences; 6; 4; 12-2013; 2484-25201936-4954enginfo:eu-repo/semantics/altIdentifier/doi/10.1137/120872048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:01Zoai:ri.conicet.gov.ar:11336/3377instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:01.662CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields |
title |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields |
spellingShingle |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields Yao, Jian-Feng Dynamic Textures Random Fields Motion Analysis Mixed-State Models |
title_short |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields |
title_full |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields |
title_fullStr |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields |
title_full_unstemmed |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields |
title_sort |
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields |
dc.creator.none.fl_str_mv |
Yao, Jian-Feng Crivelli, Tomás Cernuschi Frias, Bruno Bouthemy, P. |
author |
Yao, Jian-Feng |
author_facet |
Yao, Jian-Feng Crivelli, Tomás Cernuschi Frias, Bruno Bouthemy, P. |
author_role |
author |
author2 |
Crivelli, Tomás Cernuschi Frias, Bruno Bouthemy, P. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Dynamic Textures Random Fields Motion Analysis Mixed-State Models |
topic |
Dynamic Textures Random Fields Motion Analysis Mixed-State Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A motion texture is an instantaneous motion map extracted from a dynamic texture. We observe that such motion maps exhibit values of two types: a discrete component at zero (absence of motion) and continuous motion values. We thus develop a mixed-state Markov random field model to represent motion textures. The core of our approach is to show that motion information is powerful enough to classify and segment dynamic textures if it is properly modeled regarding its specific nature and the local interactions involved. A parsimonious set of 11 parameters constitutes the descriptive feature of a motion texture. The motivation of the proposed formulation runs toward the analysis of dynamic video contents, and we tackle two related problems. First, we present a method for recognition and classification of motion textures, by means of the Kullback-Leibler distance between mixed-state statistical models. Second, we define a two-frame motion texture maximum a posteriori (MAP)-based segmentation method applicable to motion textures with deforming boundaries. We also investigate a new issue, the space-time dynamic texture segmentation, by combining the spatial segmentation and the recognition methods. Numerous experimental results are reported for those three problems which demonstrate the efficiency and accuracy of the proposed two-frame approach. Fil: Yao, Jian-Feng. The University of Hong Kong. Department of Statistics and Actuarial Science; Hong Kong Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina Fil: Bouthemy, P.. Inria, Centre Rennes - Bretagne Atlantique; Francia |
description |
A motion texture is an instantaneous motion map extracted from a dynamic texture. We observe that such motion maps exhibit values of two types: a discrete component at zero (absence of motion) and continuous motion values. We thus develop a mixed-state Markov random field model to represent motion textures. The core of our approach is to show that motion information is powerful enough to classify and segment dynamic textures if it is properly modeled regarding its specific nature and the local interactions involved. A parsimonious set of 11 parameters constitutes the descriptive feature of a motion texture. The motivation of the proposed formulation runs toward the analysis of dynamic video contents, and we tackle two related problems. First, we present a method for recognition and classification of motion textures, by means of the Kullback-Leibler distance between mixed-state statistical models. Second, we define a two-frame motion texture maximum a posteriori (MAP)-based segmentation method applicable to motion textures with deforming boundaries. We also investigate a new issue, the space-time dynamic texture segmentation, by combining the spatial segmentation and the recognition methods. Numerous experimental results are reported for those three problems which demonstrate the efficiency and accuracy of the proposed two-frame approach. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3377 Yao, Jian-Feng ; Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, P.; Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields; SIAM; SIAM Journal On Imaging Sciences; 6; 4; 12-2013; 2484-2520 1936-4954 |
url |
http://hdl.handle.net/11336/3377 |
identifier_str_mv |
Yao, Jian-Feng ; Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, P.; Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields; SIAM; SIAM Journal On Imaging Sciences; 6; 4; 12-2013; 2484-2520 1936-4954 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/120872048 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
SIAM |
publisher.none.fl_str_mv |
SIAM |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614196283572224 |
score |
13.070432 |