Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context
- Autores
- Gimenez Romero, Javier Alejandro; Amicarelli, Adriana Natacha; Toibero, Juan Marcos; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper models the complex simultaneous localization and mapping (SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal.
Fil: Gimenez Romero, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Toibero, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
Iterated Conditional Modes
Markov Random Fields
Modelling
On-Line Solver
Simultaneous Localization And Mapping - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63541
Ver los metadatos del registro completo
id |
CONICETDig_c27243329514e8163407a37652af4973 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63541 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields ContextGimenez Romero, Javier AlejandroAmicarelli, Adriana NatachaToibero, Juan MarcosDi Sciascio, Fernando AgustínCarelli Albarracin, Ricardo OscarIterated Conditional ModesMarkov Random FieldsModellingOn-Line SolverSimultaneous Localization And Mappinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper models the complex simultaneous localization and mapping (SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal.Fil: Gimenez Romero, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Toibero, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63541Gimenez Romero, Javier Alejandro; Amicarelli, Adriana Natacha; Toibero, Juan Marcos; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context; Springer; International Journal of Automation and Computing; 15; 3; 6-2018; 310-3241476-81861751-8520CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11633-017-1109-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11633-017-1109-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:39Zoai:ri.conicet.gov.ar:11336/63541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:39.474CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context |
title |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context |
spellingShingle |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context Gimenez Romero, Javier Alejandro Iterated Conditional Modes Markov Random Fields Modelling On-Line Solver Simultaneous Localization And Mapping |
title_short |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context |
title_full |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context |
title_fullStr |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context |
title_full_unstemmed |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context |
title_sort |
Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context |
dc.creator.none.fl_str_mv |
Gimenez Romero, Javier Alejandro Amicarelli, Adriana Natacha Toibero, Juan Marcos Di Sciascio, Fernando Agustín Carelli Albarracin, Ricardo Oscar |
author |
Gimenez Romero, Javier Alejandro |
author_facet |
Gimenez Romero, Javier Alejandro Amicarelli, Adriana Natacha Toibero, Juan Marcos Di Sciascio, Fernando Agustín Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Amicarelli, Adriana Natacha Toibero, Juan Marcos Di Sciascio, Fernando Agustín Carelli Albarracin, Ricardo Oscar |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Iterated Conditional Modes Markov Random Fields Modelling On-Line Solver Simultaneous Localization And Mapping |
topic |
Iterated Conditional Modes Markov Random Fields Modelling On-Line Solver Simultaneous Localization And Mapping |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper models the complex simultaneous localization and mapping (SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal. Fil: Gimenez Romero, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Amicarelli, Adriana Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Toibero, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
This paper models the complex simultaneous localization and mapping (SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63541 Gimenez Romero, Javier Alejandro; Amicarelli, Adriana Natacha; Toibero, Juan Marcos; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context; Springer; International Journal of Automation and Computing; 15; 3; 6-2018; 310-324 1476-8186 1751-8520 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63541 |
identifier_str_mv |
Gimenez Romero, Javier Alejandro; Amicarelli, Adriana Natacha; Toibero, Juan Marcos; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context; Springer; International Journal of Automation and Computing; 15; 3; 6-2018; 310-324 1476-8186 1751-8520 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11633-017-1109-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11633-017-1109-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613373592862720 |
score |
13.070432 |