Mixed-state causal modeling for statistical KL-based motion texture tracking
- Autores
 - Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng
 - Año de publicación
 - 2010
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach.
Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Bouthemy, Patrick. Irisa, Inria, Rennes, Francia;
Fil: Yao, Jian-Feng. Institut National de Recherche en Informatique et en Automatique; Francia - Materia
 - 
            
        Mixed-State Markov Models
Motion Textures
Visual Tracking
Kullback-Leibler Divergence - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/19432
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_ed5c393ef0abbeb0b8e04ed2a0205a45 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/19432 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Mixed-state causal modeling for statistical KL-based motion texture trackingCrivelli, TomásCernuschi Frias, BrunoBouthemy, PatrickYao, Jian-FengMixed-State Markov ModelsMotion TexturesVisual TrackingKullback-Leibler Divergencehttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach.Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Bouthemy, Patrick. Irisa, Inria, Rennes, Francia;Fil: Yao, Jian-Feng. Institut National de Recherche en Informatique et en Automatique; FranciaElsevier Science2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19432Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng; Mixed-state causal modeling for statistical KL-based motion texture tracking; Elsevier Science; Pattern Recognition Letters; 31; 14; 11-2010; 2286-22940167-8655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865510002035info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2010.06.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:14:31Zoai:ri.conicet.gov.ar:11336/19432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:14:31.367CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking | 
      
| title | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking | 
      
| spellingShingle | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking Crivelli, Tomás Mixed-State Markov Models Motion Textures Visual Tracking Kullback-Leibler Divergence  | 
      
| title_short | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking | 
      
| title_full | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking | 
      
| title_fullStr | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking | 
      
| title_full_unstemmed | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking | 
      
| title_sort | 
                                Mixed-state causal modeling for statistical KL-based motion texture tracking | 
      
| dc.creator.none.fl_str_mv | 
                                Crivelli, Tomás Cernuschi Frias, Bruno Bouthemy, Patrick Yao, Jian-Feng  | 
      
| author | 
                                Crivelli, Tomás | 
      
| author_facet | 
                                Crivelli, Tomás Cernuschi Frias, Bruno Bouthemy, Patrick Yao, Jian-Feng  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Cernuschi Frias, Bruno Bouthemy, Patrick Yao, Jian-Feng  | 
      
| author2_role | 
                                author author author  | 
      
| dc.subject.none.fl_str_mv | 
                                Mixed-State Markov Models Motion Textures Visual Tracking Kullback-Leibler Divergence  | 
      
| topic | 
                                Mixed-State Markov Models Motion Textures Visual Tracking Kullback-Leibler Divergence  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2  | 
      
| dc.description.none.fl_txt_mv | 
                                We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach. Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Bouthemy, Patrick. Irisa, Inria, Rennes, Francia; Fil: Yao, Jian-Feng. Institut National de Recherche en Informatique et en Automatique; Francia  | 
      
| description | 
                                We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach. | 
      
| publishDate | 
                                2010 | 
      
| dc.date.none.fl_str_mv | 
                                2010-11 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/19432 Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng; Mixed-state causal modeling for statistical KL-based motion texture tracking; Elsevier Science; Pattern Recognition Letters; 31; 14; 11-2010; 2286-2294 0167-8655 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/19432 | 
      
| identifier_str_mv | 
                                Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng; Mixed-state causal modeling for statistical KL-based motion texture tracking; Elsevier Science; Pattern Recognition Letters; 31; 14; 11-2010; 2286-2294 0167-8655 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865510002035 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2010.06.016  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Elsevier Science | 
      
| publisher.none.fl_str_mv | 
                                Elsevier Science | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426009501007872 | 
      
| score | 
                                13.10058 |