Mixed-state causal modeling for statistical KL-based motion texture tracking
- Autores
- Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach.
Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Bouthemy, Patrick. Irisa, Inria, Rennes, Francia;
Fil: Yao, Jian-Feng. Institut National de Recherche en Informatique et en Automatique; Francia - Materia
-
Mixed-State Markov Models
Motion Textures
Visual Tracking
Kullback-Leibler Divergence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19432
Ver los metadatos del registro completo
id |
CONICETDig_ed5c393ef0abbeb0b8e04ed2a0205a45 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19432 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mixed-state causal modeling for statistical KL-based motion texture trackingCrivelli, TomásCernuschi Frias, BrunoBouthemy, PatrickYao, Jian-FengMixed-State Markov ModelsMotion TexturesVisual TrackingKullback-Leibler Divergencehttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach.Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Bouthemy, Patrick. Irisa, Inria, Rennes, Francia;Fil: Yao, Jian-Feng. Institut National de Recherche en Informatique et en Automatique; FranciaElsevier Science2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19432Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng; Mixed-state causal modeling for statistical KL-based motion texture tracking; Elsevier Science; Pattern Recognition Letters; 31; 14; 11-2010; 2286-22940167-8655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865510002035info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2010.06.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:34Zoai:ri.conicet.gov.ar:11336/19432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:34.318CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mixed-state causal modeling for statistical KL-based motion texture tracking |
title |
Mixed-state causal modeling for statistical KL-based motion texture tracking |
spellingShingle |
Mixed-state causal modeling for statistical KL-based motion texture tracking Crivelli, Tomás Mixed-State Markov Models Motion Textures Visual Tracking Kullback-Leibler Divergence |
title_short |
Mixed-state causal modeling for statistical KL-based motion texture tracking |
title_full |
Mixed-state causal modeling for statistical KL-based motion texture tracking |
title_fullStr |
Mixed-state causal modeling for statistical KL-based motion texture tracking |
title_full_unstemmed |
Mixed-state causal modeling for statistical KL-based motion texture tracking |
title_sort |
Mixed-state causal modeling for statistical KL-based motion texture tracking |
dc.creator.none.fl_str_mv |
Crivelli, Tomás Cernuschi Frias, Bruno Bouthemy, Patrick Yao, Jian-Feng |
author |
Crivelli, Tomás |
author_facet |
Crivelli, Tomás Cernuschi Frias, Bruno Bouthemy, Patrick Yao, Jian-Feng |
author_role |
author |
author2 |
Cernuschi Frias, Bruno Bouthemy, Patrick Yao, Jian-Feng |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Mixed-State Markov Models Motion Textures Visual Tracking Kullback-Leibler Divergence |
topic |
Mixed-State Markov Models Motion Textures Visual Tracking Kullback-Leibler Divergence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach. Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Bouthemy, Patrick. Irisa, Inria, Rennes, Francia; Fil: Yao, Jian-Feng. Institut National de Recherche en Informatique et en Automatique; Francia |
description |
We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback?Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19432 Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng; Mixed-state causal modeling for statistical KL-based motion texture tracking; Elsevier Science; Pattern Recognition Letters; 31; 14; 11-2010; 2286-2294 0167-8655 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19432 |
identifier_str_mv |
Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, Patrick; Yao, Jian-Feng; Mixed-state causal modeling for statistical KL-based motion texture tracking; Elsevier Science; Pattern Recognition Letters; 31; 14; 11-2010; 2286-2294 0167-8655 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865510002035 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2010.06.016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613032285569024 |
score |
13.070432 |