On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
- Autores
- Maltz, Alberto Leonardo
- Año de publicación
- 1999
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given.
Facultad de Ciencias Exactas - Materia
-
Matemática
Random fields on integer lattice
partial-sum process
Brownian motion
uniform central limit theorem
nonuniform O-mixing
metric entropy
Gibbs fields - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/139036
Ver los metadatos del registro completo
| id |
SEDICI_63cf1bf9d5f96911fb52c7fc12c69a8b |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/139036 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
On the Central Limit Theorem for Nonuniform φ-Mixing Random FieldsMaltz, Alberto LeonardoMatemáticaRandom fields on integer latticepartial-sum processBrownian motionuniform central limit theoremnonuniform O-mixingmetric entropyGibbs fieldsThe partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given.Facultad de Ciencias Exactas1999info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf643-660http://sedici.unlp.edu.ar/handle/10915/139036enginfo:eu-repo/semantics/altIdentifier/issn/0894-9840info:eu-repo/semantics/altIdentifier/issn/1572-9230info:eu-repo/semantics/altIdentifier/doi/10.1023/a:1021619613916info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:36:58Zoai:sedici.unlp.edu.ar:10915/139036Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:36:58.459SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields |
| title |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields |
| spellingShingle |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields Maltz, Alberto Leonardo Matemática Random fields on integer lattice partial-sum process Brownian motion uniform central limit theorem nonuniform O-mixing metric entropy Gibbs fields |
| title_short |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields |
| title_full |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields |
| title_fullStr |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields |
| title_full_unstemmed |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields |
| title_sort |
On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields |
| dc.creator.none.fl_str_mv |
Maltz, Alberto Leonardo |
| author |
Maltz, Alberto Leonardo |
| author_facet |
Maltz, Alberto Leonardo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Matemática Random fields on integer lattice partial-sum process Brownian motion uniform central limit theorem nonuniform O-mixing metric entropy Gibbs fields |
| topic |
Matemática Random fields on integer lattice partial-sum process Brownian motion uniform central limit theorem nonuniform O-mixing metric entropy Gibbs fields |
| dc.description.none.fl_txt_mv |
The partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given. Facultad de Ciencias Exactas |
| description |
The partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given. |
| publishDate |
1999 |
| dc.date.none.fl_str_mv |
1999 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/139036 |
| url |
http://sedici.unlp.edu.ar/handle/10915/139036 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0894-9840 info:eu-repo/semantics/altIdentifier/issn/1572-9230 info:eu-repo/semantics/altIdentifier/doi/10.1023/a:1021619613916 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 643-660 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847428474967425024 |
| score |
13.10058 |