On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields

Autores
Maltz, Alberto Leonardo
Año de publicación
1999
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given.
Facultad de Ciencias Exactas
Materia
Matemática
Random fields on integer lattice
partial-sum process
Brownian motion
uniform central limit theorem
nonuniform O-mixing
metric entropy
Gibbs fields
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/139036

id SEDICI_63cf1bf9d5f96911fb52c7fc12c69a8b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/139036
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On the Central Limit Theorem for Nonuniform φ-Mixing Random FieldsMaltz, Alberto LeonardoMatemáticaRandom fields on integer latticepartial-sum processBrownian motionuniform central limit theoremnonuniform O-mixingmetric entropyGibbs fieldsThe partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given.Facultad de Ciencias Exactas1999info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf643-660http://sedici.unlp.edu.ar/handle/10915/139036enginfo:eu-repo/semantics/altIdentifier/issn/0894-9840info:eu-repo/semantics/altIdentifier/issn/1572-9230info:eu-repo/semantics/altIdentifier/doi/10.1023/a:1021619613916info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:52Zoai:sedici.unlp.edu.ar:10915/139036Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:52.411SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
title On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
spellingShingle On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
Maltz, Alberto Leonardo
Matemática
Random fields on integer lattice
partial-sum process
Brownian motion
uniform central limit theorem
nonuniform O-mixing
metric entropy
Gibbs fields
title_short On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
title_full On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
title_fullStr On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
title_full_unstemmed On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
title_sort On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields
dc.creator.none.fl_str_mv Maltz, Alberto Leonardo
author Maltz, Alberto Leonardo
author_facet Maltz, Alberto Leonardo
author_role author
dc.subject.none.fl_str_mv Matemática
Random fields on integer lattice
partial-sum process
Brownian motion
uniform central limit theorem
nonuniform O-mixing
metric entropy
Gibbs fields
topic Matemática
Random fields on integer lattice
partial-sum process
Brownian motion
uniform central limit theorem
nonuniform O-mixing
metric entropy
Gibbs fields
dc.description.none.fl_txt_mv The partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given.
Facultad de Ciencias Exactas
description The partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given.
publishDate 1999
dc.date.none.fl_str_mv 1999
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/139036
url http://sedici.unlp.edu.ar/handle/10915/139036
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0894-9840
info:eu-repo/semantics/altIdentifier/issn/1572-9230
info:eu-repo/semantics/altIdentifier/doi/10.1023/a:1021619613916
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
643-660
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616198300368896
score 13.070432