A method for mixed states texture segmentation with simultaneous parameter estimation
- Autores
- Mailing, Agustin Beltran; Cernuschi Frias, Bruno
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work a method for mixed-state model motion texture segmentation and parameter estimation is presented. We use the Expectation Maximization algorithm for mixture parameter estimation, introducing the Gibbs distribution for moving points, excluding zero discrete component associated with no motion regions. We use then the a posteriori probabilities to generate an alternative field to segment the textures according to its statistical parameters.
Fil: Mailing, Agustin Beltran. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Cernuschi Frias, Bruno. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
EXPECTATION MAXIMIZATION
MARKOV RANDOM FIELDS
MOTION TEXTURES
PSEUDO-LIKELIHOOD
SEGMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93032
Ver los metadatos del registro completo
id |
CONICETDig_78a73ea396eb16ddfab0da02a104cb24 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93032 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A method for mixed states texture segmentation with simultaneous parameter estimationMailing, Agustin BeltranCernuschi Frias, BrunoEXPECTATION MAXIMIZATIONMARKOV RANDOM FIELDSMOTION TEXTURESPSEUDO-LIKELIHOODSEGMENTATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work a method for mixed-state model motion texture segmentation and parameter estimation is presented. We use the Expectation Maximization algorithm for mixture parameter estimation, introducing the Gibbs distribution for moving points, excluding zero discrete component associated with no motion regions. We use then the a posteriori probabilities to generate an alternative field to segment the textures according to its statistical parameters.Fil: Mailing, Agustin Beltran. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Cernuschi Frias, Bruno. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93032Mailing, Agustin Beltran; Cernuschi Frias, Bruno; A method for mixed states texture segmentation with simultaneous parameter estimation; Elsevier Science; Pattern Recognition Letters; 32; 15; 11-2011; 1982-19890167-8655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2011.07.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0167865511002431info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:31Zoai:ri.conicet.gov.ar:11336/93032instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:31.888CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A method for mixed states texture segmentation with simultaneous parameter estimation |
title |
A method for mixed states texture segmentation with simultaneous parameter estimation |
spellingShingle |
A method for mixed states texture segmentation with simultaneous parameter estimation Mailing, Agustin Beltran EXPECTATION MAXIMIZATION MARKOV RANDOM FIELDS MOTION TEXTURES PSEUDO-LIKELIHOOD SEGMENTATION |
title_short |
A method for mixed states texture segmentation with simultaneous parameter estimation |
title_full |
A method for mixed states texture segmentation with simultaneous parameter estimation |
title_fullStr |
A method for mixed states texture segmentation with simultaneous parameter estimation |
title_full_unstemmed |
A method for mixed states texture segmentation with simultaneous parameter estimation |
title_sort |
A method for mixed states texture segmentation with simultaneous parameter estimation |
dc.creator.none.fl_str_mv |
Mailing, Agustin Beltran Cernuschi Frias, Bruno |
author |
Mailing, Agustin Beltran |
author_facet |
Mailing, Agustin Beltran Cernuschi Frias, Bruno |
author_role |
author |
author2 |
Cernuschi Frias, Bruno |
author2_role |
author |
dc.subject.none.fl_str_mv |
EXPECTATION MAXIMIZATION MARKOV RANDOM FIELDS MOTION TEXTURES PSEUDO-LIKELIHOOD SEGMENTATION |
topic |
EXPECTATION MAXIMIZATION MARKOV RANDOM FIELDS MOTION TEXTURES PSEUDO-LIKELIHOOD SEGMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work a method for mixed-state model motion texture segmentation and parameter estimation is presented. We use the Expectation Maximization algorithm for mixture parameter estimation, introducing the Gibbs distribution for moving points, excluding zero discrete component associated with no motion regions. We use then the a posteriori probabilities to generate an alternative field to segment the textures according to its statistical parameters. Fil: Mailing, Agustin Beltran. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Cernuschi Frias, Bruno. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
In this work a method for mixed-state model motion texture segmentation and parameter estimation is presented. We use the Expectation Maximization algorithm for mixture parameter estimation, introducing the Gibbs distribution for moving points, excluding zero discrete component associated with no motion regions. We use then the a posteriori probabilities to generate an alternative field to segment the textures according to its statistical parameters. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93032 Mailing, Agustin Beltran; Cernuschi Frias, Bruno; A method for mixed states texture segmentation with simultaneous parameter estimation; Elsevier Science; Pattern Recognition Letters; 32; 15; 11-2011; 1982-1989 0167-8655 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93032 |
identifier_str_mv |
Mailing, Agustin Beltran; Cernuschi Frias, Bruno; A method for mixed states texture segmentation with simultaneous parameter estimation; Elsevier Science; Pattern Recognition Letters; 32; 15; 11-2011; 1982-1989 0167-8655 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2011.07.022 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0167865511002431 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269585612472320 |
score |
13.13397 |