Aprendizaje de independencias específicas del contexto en Markov random fields
- Autores
- Edera, Alejandro; Bromberg, Facundo
- Año de publicación
- 2011
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Los modelos no dirigidos o Markov random fields son ampliamente utilizados para problemas que aprenden una distribución desconocida desde un conjunto de datos. Esto es porque permiten representar una distribución eficientemente al hacer explícitas las independencias condicionales que pueden existir entre sus variables. Además de estas independencias es posible representar otras, las Independencias Específicas del Contexto (CSIs) que a diferencia de las anteriores sólo son válidas bajo ciertos valores que pueden tomar subconjuntos de sus variables. Debido a esto son complicadas de representar y aprenderlas desde datos. En este trabajo presentamos un enfoque para representar CSIs en modelos no dirigidos y un algoritmo que las aprende desde datos utilizando tests estadísticos. Mostramos resultados donde los modelos aprendidos por nuestro algoritmo resultan ser mejores o comparables a modelos aprendidos por otros sin utilizar CSIs.
Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Markov processes
Markov random fields; context-specific independence; ising model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/18575
Ver los metadatos del registro completo
id |
SEDICI_242fc598f1785ffe0d10a6b54ce9cd5e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/18575 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Aprendizaje de independencias específicas del contexto en Markov random fieldsEdera, AlejandroBromberg, FacundoCiencias InformáticasMarkov processesMarkov random fields; context-specific independence; ising modelLos modelos no dirigidos o Markov random fields son ampliamente utilizados para problemas que aprenden una distribución desconocida desde un conjunto de datos. Esto es porque permiten representar una distribución eficientemente al hacer explícitas las independencias condicionales que pueden existir entre sus variables. Además de estas independencias es posible representar otras, las Independencias Específicas del Contexto (CSIs) que a diferencia de las anteriores sólo son válidas bajo ciertos valores que pueden tomar subconjuntos de sus variables. Debido a esto son complicadas de representar y aprenderlas desde datos. En este trabajo presentamos un enfoque para representar CSIs en modelos no dirigidos y un algoritmo que las aprende desde datos utilizando tests estadísticos. Mostramos resultados donde los modelos aprendidos por nuestro algoritmo resultan ser mejores o comparables a modelos aprendidos por otros sin utilizar CSIs.Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2011-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf41-50http://sedici.unlp.edu.ar/handle/10915/18575spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:56:57Zoai:sedici.unlp.edu.ar:10915/18575Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:56:58.014SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Aprendizaje de independencias específicas del contexto en Markov random fields |
title |
Aprendizaje de independencias específicas del contexto en Markov random fields |
spellingShingle |
Aprendizaje de independencias específicas del contexto en Markov random fields Edera, Alejandro Ciencias Informáticas Markov processes Markov random fields; context-specific independence; ising model |
title_short |
Aprendizaje de independencias específicas del contexto en Markov random fields |
title_full |
Aprendizaje de independencias específicas del contexto en Markov random fields |
title_fullStr |
Aprendizaje de independencias específicas del contexto en Markov random fields |
title_full_unstemmed |
Aprendizaje de independencias específicas del contexto en Markov random fields |
title_sort |
Aprendizaje de independencias específicas del contexto en Markov random fields |
dc.creator.none.fl_str_mv |
Edera, Alejandro Bromberg, Facundo |
author |
Edera, Alejandro |
author_facet |
Edera, Alejandro Bromberg, Facundo |
author_role |
author |
author2 |
Bromberg, Facundo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Markov processes Markov random fields; context-specific independence; ising model |
topic |
Ciencias Informáticas Markov processes Markov random fields; context-specific independence; ising model |
dc.description.none.fl_txt_mv |
Los modelos no dirigidos o Markov random fields son ampliamente utilizados para problemas que aprenden una distribución desconocida desde un conjunto de datos. Esto es porque permiten representar una distribución eficientemente al hacer explícitas las independencias condicionales que pueden existir entre sus variables. Además de estas independencias es posible representar otras, las Independencias Específicas del Contexto (CSIs) que a diferencia de las anteriores sólo son válidas bajo ciertos valores que pueden tomar subconjuntos de sus variables. Debido a esto son complicadas de representar y aprenderlas desde datos. En este trabajo presentamos un enfoque para representar CSIs en modelos no dirigidos y un algoritmo que las aprende desde datos utilizando tests estadísticos. Mostramos resultados donde los modelos aprendidos por nuestro algoritmo resultan ser mejores o comparables a modelos aprendidos por otros sin utilizar CSIs. Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Los modelos no dirigidos o Markov random fields son ampliamente utilizados para problemas que aprenden una distribución desconocida desde un conjunto de datos. Esto es porque permiten representar una distribución eficientemente al hacer explícitas las independencias condicionales que pueden existir entre sus variables. Además de estas independencias es posible representar otras, las Independencias Específicas del Contexto (CSIs) que a diferencia de las anteriores sólo son válidas bajo ciertos valores que pueden tomar subconjuntos de sus variables. Debido a esto son complicadas de representar y aprenderlas desde datos. En este trabajo presentamos un enfoque para representar CSIs en modelos no dirigidos y un algoritmo que las aprende desde datos utilizando tests estadísticos. Mostramos resultados donde los modelos aprendidos por nuestro algoritmo resultan ser mejores o comparables a modelos aprendidos por otros sin utilizar CSIs. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/18575 |
url |
http://sedici.unlp.edu.ar/handle/10915/18575 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 41-50 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842903745718910976 |
score |
12.993085 |