On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras
- Autores
- Cagliero, Leandro Roberto; Szchetman, Fernando
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,yin K$. When is $F[x,y]=F[alpha x+eta y]$ for some non-zero elements $alpha,etain F$?
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Szchetman, Fernando. University of Regina; Canadá - Materia
-
Uniserial Module
Lie Algebra
Associative Algebra
Primitive Element - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32141
Ver los metadatos del registro completo
| id |
CONICETDig_6b52e8cc2348057f8ea8dc5a6a6ddb40 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32141 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebrasCagliero, Leandro RobertoSzchetman, FernandoUniserial ModuleLie AlgebraAssociative AlgebraPrimitive Elementhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,yin K$. When is $F[x,y]=F[alpha x+eta y]$ for some non-zero elements $alpha,etain F$?Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Szchetman, Fernando. University of Regina; CanadáCanadian Mathematical Soc2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32141Cagliero, Leandro Roberto; Szchetman, Fernando; On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 12-2014; 735-7480008-4395CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1306.3965info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/on-the-theorem-of-the-primitive-element-with-applications-to-the-representation-theory-of-associative-and-lie-algebras/D8877328E0421D85BB4D0FC2A1181C1Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:08:58Zoai:ri.conicet.gov.ar:11336/32141instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:08:58.934CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras |
| title |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras |
| spellingShingle |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras Cagliero, Leandro Roberto Uniserial Module Lie Algebra Associative Algebra Primitive Element |
| title_short |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras |
| title_full |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras |
| title_fullStr |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras |
| title_full_unstemmed |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras |
| title_sort |
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras |
| dc.creator.none.fl_str_mv |
Cagliero, Leandro Roberto Szchetman, Fernando |
| author |
Cagliero, Leandro Roberto |
| author_facet |
Cagliero, Leandro Roberto Szchetman, Fernando |
| author_role |
author |
| author2 |
Szchetman, Fernando |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Uniserial Module Lie Algebra Associative Algebra Primitive Element |
| topic |
Uniserial Module Lie Algebra Associative Algebra Primitive Element |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,yin K$. When is $F[x,y]=F[alpha x+eta y]$ for some non-zero elements $alpha,etain F$? Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Szchetman, Fernando. University of Regina; Canadá |
| description |
We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,yin K$. When is $F[x,y]=F[alpha x+eta y]$ for some non-zero elements $alpha,etain F$? |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32141 Cagliero, Leandro Roberto; Szchetman, Fernando; On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 12-2014; 735-748 0008-4395 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/32141 |
| identifier_str_mv |
Cagliero, Leandro Roberto; Szchetman, Fernando; On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 12-2014; 735-748 0008-4395 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1306.3965 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/on-the-theorem-of-the-primitive-element-with-applications-to-the-representation-theory-of-associative-and-lie-algebras/D8877328E0421D85BB4D0FC2A1181C1A |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Canadian Mathematical Soc |
| publisher.none.fl_str_mv |
Canadian Mathematical Soc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781427946881024 |
| score |
12.8982525 |