Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
- Autores
- Cagliero, Leandro Roberto; Szechtman, Fernando
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Szechtman, Fernando. University Of Regina; Canadá - Materia
-
INDECOMPOSABLE MODULE
LIE ALGEBRA
UNISERIAL MODULE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/185954
Ver los metadatos del registro completo
| id |
CONICETDig_589d2ab94d679b7011b3f43bcce3cb35 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/185954 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristicCagliero, Leandro RobertoSzechtman, FernandoINDECOMPOSABLE MODULELIE ALGEBRAUNISERIAL MODULEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series.Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Szechtman, Fernando. University Of Regina; CanadáTaylor & Francis2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/185954Cagliero, Leandro Roberto; Szechtman, Fernando; Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic; Taylor & Francis; Communications In Algebra; 44; 1; 10-2015; 1-100092-78721532-4125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927872.2014.975352info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2014.975352info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:17Zoai:ri.conicet.gov.ar:11336/185954instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:17.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic |
| title |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic |
| spellingShingle |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic Cagliero, Leandro Roberto INDECOMPOSABLE MODULE LIE ALGEBRA UNISERIAL MODULE |
| title_short |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic |
| title_full |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic |
| title_fullStr |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic |
| title_full_unstemmed |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic |
| title_sort |
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic |
| dc.creator.none.fl_str_mv |
Cagliero, Leandro Roberto Szechtman, Fernando |
| author |
Cagliero, Leandro Roberto |
| author_facet |
Cagliero, Leandro Roberto Szechtman, Fernando |
| author_role |
author |
| author2 |
Szechtman, Fernando |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
INDECOMPOSABLE MODULE LIE ALGEBRA UNISERIAL MODULE |
| topic |
INDECOMPOSABLE MODULE LIE ALGEBRA UNISERIAL MODULE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series. Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Szechtman, Fernando. University Of Regina; Canadá |
| description |
Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/185954 Cagliero, Leandro Roberto; Szechtman, Fernando; Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic; Taylor & Francis; Communications In Algebra; 44; 1; 10-2015; 1-10 0092-7872 1532-4125 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/185954 |
| identifier_str_mv |
Cagliero, Leandro Roberto; Szechtman, Fernando; Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic; Taylor & Francis; Communications In Algebra; 44; 1; 10-2015; 1-10 0092-7872 1532-4125 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927872.2014.975352 info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2014.975352 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor & Francis |
| publisher.none.fl_str_mv |
Taylor & Francis |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846082640797499392 |
| score |
13.22299 |