Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic

Autores
Cagliero, Leandro Roberto; Szechtman, Fernando
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Szechtman, Fernando. University Of Regina; Canadá
Materia
INDECOMPOSABLE MODULE
LIE ALGEBRA
UNISERIAL MODULE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/185954

id CONICETDig_589d2ab94d679b7011b3f43bcce3cb35
oai_identifier_str oai:ri.conicet.gov.ar:11336/185954
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristicCagliero, Leandro RobertoSzechtman, FernandoINDECOMPOSABLE MODULELIE ALGEBRAUNISERIAL MODULEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series.Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Szechtman, Fernando. University Of Regina; CanadáTaylor & Francis2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/185954Cagliero, Leandro Roberto; Szechtman, Fernando; Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic; Taylor & Francis; Communications In Algebra; 44; 1; 10-2015; 1-100092-78721532-4125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927872.2014.975352info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2014.975352info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:17Zoai:ri.conicet.gov.ar:11336/185954instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:17.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
title Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
spellingShingle Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
Cagliero, Leandro Roberto
INDECOMPOSABLE MODULE
LIE ALGEBRA
UNISERIAL MODULE
title_short Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
title_full Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
title_fullStr Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
title_full_unstemmed Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
title_sort Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic
dc.creator.none.fl_str_mv Cagliero, Leandro Roberto
Szechtman, Fernando
author Cagliero, Leandro Roberto
author_facet Cagliero, Leandro Roberto
Szechtman, Fernando
author_role author
author2 Szechtman, Fernando
author2_role author
dc.subject.none.fl_str_mv INDECOMPOSABLE MODULE
LIE ALGEBRA
UNISERIAL MODULE
topic INDECOMPOSABLE MODULE
LIE ALGEBRA
UNISERIAL MODULE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Szechtman, Fernando. University Of Regina; Canadá
description Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/185954
Cagliero, Leandro Roberto; Szechtman, Fernando; Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic; Taylor & Francis; Communications In Algebra; 44; 1; 10-2015; 1-10
0092-7872
1532-4125
CONICET Digital
CONICET
url http://hdl.handle.net/11336/185954
identifier_str_mv Cagliero, Leandro Roberto; Szechtman, Fernando; Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic; Taylor & Francis; Communications In Algebra; 44; 1; 10-2015; 1-10
0092-7872
1532-4125
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927872.2014.975352
info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2014.975352
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082640797499392
score 13.22299