Free 2-step nilpotent Lie algebras and indecomposable representations

Autores
Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Frez, Luis Gutiérrez. Universidad Austral de Chile; Chile
Fil: Szechtman, Fernando. University Of Regina; Canadá
Materia
FREE 2-STEP NILPOTENT LIE ALGEBRA
UNISERIAL REPRESENTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88475

id CONICETDig_381828200fbac078675dfa788d84d3f5
oai_identifier_str oai:ri.conicet.gov.ar:11336/88475
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Free 2-step nilpotent Lie algebras and indecomposable representationsCagliero, Leandro RobertoFrez, Luis GutiérrezSzechtman, FernandoFREE 2-STEP NILPOTENT LIE ALGEBRAUNISERIAL REPRESENTATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Frez, Luis Gutiérrez. Universidad Austral de Chile; ChileFil: Szechtman, Fernando. University Of Regina; CanadáTaylor & Francis2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88475Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-30050092-78721532-4125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2017.1404086info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/admin/retrieve/5de9f711-4569-4267-89b4-74be97d2c22f/CONICET_Digital_Nro.2d9e3c3e-9d8d-4ec3-b8ea-57601cd7ccf8_A.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:28Zoai:ri.conicet.gov.ar:11336/88475instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:28.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Free 2-step nilpotent Lie algebras and indecomposable representations
title Free 2-step nilpotent Lie algebras and indecomposable representations
spellingShingle Free 2-step nilpotent Lie algebras and indecomposable representations
Cagliero, Leandro Roberto
FREE 2-STEP NILPOTENT LIE ALGEBRA
UNISERIAL REPRESENTATION
title_short Free 2-step nilpotent Lie algebras and indecomposable representations
title_full Free 2-step nilpotent Lie algebras and indecomposable representations
title_fullStr Free 2-step nilpotent Lie algebras and indecomposable representations
title_full_unstemmed Free 2-step nilpotent Lie algebras and indecomposable representations
title_sort Free 2-step nilpotent Lie algebras and indecomposable representations
dc.creator.none.fl_str_mv Cagliero, Leandro Roberto
Frez, Luis Gutiérrez
Szechtman, Fernando
author Cagliero, Leandro Roberto
author_facet Cagliero, Leandro Roberto
Frez, Luis Gutiérrez
Szechtman, Fernando
author_role author
author2 Frez, Luis Gutiérrez
Szechtman, Fernando
author2_role author
author
dc.subject.none.fl_str_mv FREE 2-STEP NILPOTENT LIE ALGEBRA
UNISERIAL REPRESENTATION
topic FREE 2-STEP NILPOTENT LIE ALGEBRA
UNISERIAL REPRESENTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Frez, Luis Gutiérrez. Universidad Austral de Chile; Chile
Fil: Szechtman, Fernando. University Of Regina; Canadá
description Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88475
Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-3005
0092-7872
1532-4125
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88475
identifier_str_mv Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-3005
0092-7872
1532-4125
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2017.1404086
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/admin/retrieve/5de9f711-4569-4267-89b4-74be97d2c22f/CONICET_Digital_Nro.2d9e3c3e-9d8d-4ec3-b8ea-57601cd7ccf8_A.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268925577920512
score 13.13397