Free 2-step nilpotent Lie algebras and indecomposable representations
- Autores
- Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Frez, Luis Gutiérrez. Universidad Austral de Chile; Chile
Fil: Szechtman, Fernando. University Of Regina; Canadá - Materia
-
FREE 2-STEP NILPOTENT LIE ALGEBRA
UNISERIAL REPRESENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88475
Ver los metadatos del registro completo
id |
CONICETDig_381828200fbac078675dfa788d84d3f5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88475 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Free 2-step nilpotent Lie algebras and indecomposable representationsCagliero, Leandro RobertoFrez, Luis GutiérrezSzechtman, FernandoFREE 2-STEP NILPOTENT LIE ALGEBRAUNISERIAL REPRESENTATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Frez, Luis Gutiérrez. Universidad Austral de Chile; ChileFil: Szechtman, Fernando. University Of Regina; CanadáTaylor & Francis2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88475Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-30050092-78721532-4125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2017.1404086info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/admin/retrieve/5de9f711-4569-4267-89b4-74be97d2c22f/CONICET_Digital_Nro.2d9e3c3e-9d8d-4ec3-b8ea-57601cd7ccf8_A.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:28Zoai:ri.conicet.gov.ar:11336/88475instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:28.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Free 2-step nilpotent Lie algebras and indecomposable representations |
title |
Free 2-step nilpotent Lie algebras and indecomposable representations |
spellingShingle |
Free 2-step nilpotent Lie algebras and indecomposable representations Cagliero, Leandro Roberto FREE 2-STEP NILPOTENT LIE ALGEBRA UNISERIAL REPRESENTATION |
title_short |
Free 2-step nilpotent Lie algebras and indecomposable representations |
title_full |
Free 2-step nilpotent Lie algebras and indecomposable representations |
title_fullStr |
Free 2-step nilpotent Lie algebras and indecomposable representations |
title_full_unstemmed |
Free 2-step nilpotent Lie algebras and indecomposable representations |
title_sort |
Free 2-step nilpotent Lie algebras and indecomposable representations |
dc.creator.none.fl_str_mv |
Cagliero, Leandro Roberto Frez, Luis Gutiérrez Szechtman, Fernando |
author |
Cagliero, Leandro Roberto |
author_facet |
Cagliero, Leandro Roberto Frez, Luis Gutiérrez Szechtman, Fernando |
author_role |
author |
author2 |
Frez, Luis Gutiérrez Szechtman, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FREE 2-STEP NILPOTENT LIE ALGEBRA UNISERIAL REPRESENTATION |
topic |
FREE 2-STEP NILPOTENT LIE ALGEBRA UNISERIAL REPRESENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block. Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Frez, Luis Gutiérrez. Universidad Austral de Chile; Chile Fil: Szechtman, Fernando. University Of Regina; Canadá |
description |
Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88475 Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-3005 0092-7872 1532-4125 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88475 |
identifier_str_mv |
Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-3005 0092-7872 1532-4125 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2017.1404086 info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/admin/retrieve/5de9f711-4569-4267-89b4-74be97d2c22f/CONICET_Digital_Nro.2d9e3c3e-9d8d-4ec3-b8ea-57601cd7ccf8_A.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268925577920512 |
score |
13.13397 |