Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
- Autores
- Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed.
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Levstein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Szechtman, Fernando. University Of Regina; Canadá - Materia
-
FREE ℓ-STEP NILPOTENT LIE ALGEBRA
INDECOMPOSABLE
NILPOTENCY CLASS
UNISERIAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143320
Ver los metadatos del registro completo
id |
CONICETDig_3a9a5aa271036480c0c09934dce77cbd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143320 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebrasCagliero, Leandro RobertoLevstein, FernandoSzechtman, FernandoFREE ℓ-STEP NILPOTENT LIE ALGEBRAINDECOMPOSABLENILPOTENCY CLASSUNISERIALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed.Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Levstein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Szechtman, Fernando. University Of Regina; CanadáAcademic Press Inc Elsevier Science2021-11-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143320Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando; Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 585; 20-11-2021; 447-4830021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869321003082info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2021.06.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:54Zoai:ri.conicet.gov.ar:11336/143320instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:54.404CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras |
title |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras |
spellingShingle |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras Cagliero, Leandro Roberto FREE ℓ-STEP NILPOTENT LIE ALGEBRA INDECOMPOSABLE NILPOTENCY CLASS UNISERIAL |
title_short |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras |
title_full |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras |
title_fullStr |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras |
title_full_unstemmed |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras |
title_sort |
Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras |
dc.creator.none.fl_str_mv |
Cagliero, Leandro Roberto Levstein, Fernando Szechtman, Fernando |
author |
Cagliero, Leandro Roberto |
author_facet |
Cagliero, Leandro Roberto Levstein, Fernando Szechtman, Fernando |
author_role |
author |
author2 |
Levstein, Fernando Szechtman, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FREE ℓ-STEP NILPOTENT LIE ALGEBRA INDECOMPOSABLE NILPOTENCY CLASS UNISERIAL |
topic |
FREE ℓ-STEP NILPOTENT LIE ALGEBRA INDECOMPOSABLE NILPOTENCY CLASS UNISERIAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed. Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Levstein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Szechtman, Fernando. University Of Regina; Canadá |
description |
Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143320 Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando; Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 585; 20-11-2021; 447-483 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143320 |
identifier_str_mv |
Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando; Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 585; 20-11-2021; 447-483 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869321003082 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2021.06.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981263016722432 |
score |
12.48226 |