Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras

Autores
Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed.
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Levstein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Szechtman, Fernando. University Of Regina; Canadá
Materia
FREE ℓ-STEP NILPOTENT LIE ALGEBRA
INDECOMPOSABLE
NILPOTENCY CLASS
UNISERIAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143320

id CONICETDig_3a9a5aa271036480c0c09934dce77cbd
oai_identifier_str oai:ri.conicet.gov.ar:11336/143320
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebrasCagliero, Leandro RobertoLevstein, FernandoSzechtman, FernandoFREE ℓ-STEP NILPOTENT LIE ALGEBRAINDECOMPOSABLENILPOTENCY CLASSUNISERIALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed.Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Levstein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Szechtman, Fernando. University Of Regina; CanadáAcademic Press Inc Elsevier Science2021-11-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143320Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando; Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 585; 20-11-2021; 447-4830021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869321003082info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2021.06.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:54Zoai:ri.conicet.gov.ar:11336/143320instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:54.404CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
title Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
spellingShingle Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
Cagliero, Leandro Roberto
FREE ℓ-STEP NILPOTENT LIE ALGEBRA
INDECOMPOSABLE
NILPOTENCY CLASS
UNISERIAL
title_short Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
title_full Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
title_fullStr Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
title_full_unstemmed Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
title_sort Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras
dc.creator.none.fl_str_mv Cagliero, Leandro Roberto
Levstein, Fernando
Szechtman, Fernando
author Cagliero, Leandro Roberto
author_facet Cagliero, Leandro Roberto
Levstein, Fernando
Szechtman, Fernando
author_role author
author2 Levstein, Fernando
Szechtman, Fernando
author2_role author
author
dc.subject.none.fl_str_mv FREE ℓ-STEP NILPOTENT LIE ALGEBRA
INDECOMPOSABLE
NILPOTENCY CLASS
UNISERIAL
topic FREE ℓ-STEP NILPOTENT LIE ALGEBRA
INDECOMPOSABLE
NILPOTENCY CLASS
UNISERIAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed.
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Levstein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Szechtman, Fernando. University Of Regina; Canadá
description Given a sequence d~ = (d1, . . . , dk) of natural numbers, we consider the Lie subalgebra h of gl(d, F), where d = d1 + · · · + dk and F is a field of characteristic 0, generated by two block upper triangular matrices D and E partitioned according to d~, and study the problem of computing the nilpotency degree m of the nilradical n of h. We obtain a complete answer when D and E belong to a certain family of matrices that arises naturally when attempting to classify the indecomposable modules of certain solvable Lie algebras. Our determination of m depends in an essential manner on the symmetry of E with respect to an outer automorphism of sl(d). The proof that m depends solely on this symmetry is long and delicate. As a direct application of our investigations on h and n we give a full classification of all uniserial modules of an extension of the free ℓ-step nilpotent Lie algebra on n generators when F is algebraically closed.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143320
Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando; Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 585; 20-11-2021; 447-483
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143320
identifier_str_mv Cagliero, Leandro Roberto; Levstein, Fernando; Szechtman, Fernando; Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 585; 20-11-2021; 447-483
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869321003082
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2021.06.008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981263016722432
score 12.48226