On algebras of holomorphic functions of a given type

Autores
Muro, Luis Santiago Miguel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem.
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
holomorphy types
polynomial ideals
Fréchet algebras
Riemann domains
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/196660

id CONICETDig_6a8b256435ada19b0c2e9f0662d60d83
oai_identifier_str oai:ri.conicet.gov.ar:11336/196660
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On algebras of holomorphic functions of a given typeMuro, Luis Santiago Miguelholomorphy typespolynomial idealsFréchet algebrasRiemann domainshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem.Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196660Muro, Luis Santiago Miguel; On algebras of holomorphic functions of a given type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 792-8110022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11011255info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:36Zoai:ri.conicet.gov.ar:11336/196660instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:36.725CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On algebras of holomorphic functions of a given type
title On algebras of holomorphic functions of a given type
spellingShingle On algebras of holomorphic functions of a given type
Muro, Luis Santiago Miguel
holomorphy types
polynomial ideals
Fréchet algebras
Riemann domains
title_short On algebras of holomorphic functions of a given type
title_full On algebras of holomorphic functions of a given type
title_fullStr On algebras of holomorphic functions of a given type
title_full_unstemmed On algebras of holomorphic functions of a given type
title_sort On algebras of holomorphic functions of a given type
dc.creator.none.fl_str_mv Muro, Luis Santiago Miguel
author Muro, Luis Santiago Miguel
author_facet Muro, Luis Santiago Miguel
author_role author
dc.subject.none.fl_str_mv holomorphy types
polynomial ideals
Fréchet algebras
Riemann domains
topic holomorphy types
polynomial ideals
Fréchet algebras
Riemann domains
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem.
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem.
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/196660
Muro, Luis Santiago Miguel; On algebras of holomorphic functions of a given type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 792-811
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/196660
identifier_str_mv Muro, Luis Santiago Miguel; On algebras of holomorphic functions of a given type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 792-811
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.022
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11011255
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268742683197440
score 13.13397