On algebras of holomorphic functions of a given type
- Autores
- Muro, Luis Santiago Miguel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem.
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
holomorphy types
polynomial ideals
Fréchet algebras
Riemann domains - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/196660
Ver los metadatos del registro completo
id |
CONICETDig_6a8b256435ada19b0c2e9f0662d60d83 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/196660 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On algebras of holomorphic functions of a given typeMuro, Luis Santiago Miguelholomorphy typespolynomial idealsFréchet algebrasRiemann domainshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem.Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196660Muro, Luis Santiago Miguel; On algebras of holomorphic functions of a given type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 792-8110022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11011255info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:36Zoai:ri.conicet.gov.ar:11336/196660instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:36.725CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On algebras of holomorphic functions of a given type |
title |
On algebras of holomorphic functions of a given type |
spellingShingle |
On algebras of holomorphic functions of a given type Muro, Luis Santiago Miguel holomorphy types polynomial ideals Fréchet algebras Riemann domains |
title_short |
On algebras of holomorphic functions of a given type |
title_full |
On algebras of holomorphic functions of a given type |
title_fullStr |
On algebras of holomorphic functions of a given type |
title_full_unstemmed |
On algebras of holomorphic functions of a given type |
title_sort |
On algebras of holomorphic functions of a given type |
dc.creator.none.fl_str_mv |
Muro, Luis Santiago Miguel |
author |
Muro, Luis Santiago Miguel |
author_facet |
Muro, Luis Santiago Miguel |
author_role |
author |
dc.subject.none.fl_str_mv |
holomorphy types polynomial ideals Fréchet algebras Riemann domains |
topic |
holomorphy types polynomial ideals Fréchet algebras Riemann domains |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem. Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/196660 Muro, Luis Santiago Miguel; On algebras of holomorphic functions of a given type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 792-811 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/196660 |
identifier_str_mv |
Muro, Luis Santiago Miguel; On algebras of holomorphic functions of a given type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 792-811 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.022 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11011255 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268742683197440 |
score |
13.13397 |