Further results on why a point process is effective for estimating correlation between brain regions
- Autores
- Cifre, I.; Zarepour Nasir Abadi, Mahdi; Horovitz, S. G.; Cannas, Sergio Alejandro; Chialvo, Dante Renato
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Signals from brain functional magnetic resonance imaging (fMRI) can be efficiently represented by a sparse spatiotemporal point process, according to a recently introduced heuristic signal processing scheme. This approach has already been validated for relevant conditions, demonstrating that it preserves and compresses a surprisingly large fraction of the signal information. Here we investigated the conditions necessary for such an approach to succeed, as well as the underlying reasons, using real fMRI data and a simulated dataset. The results show that the key lies in the temporal correlation properties of the time series under consideration. It was found that signals with slowly decaying autocorrelations are particularly suitable for this type of compression, where inflection points contain most of the information.
Fil: Cifre, I.. Universitat Ramon Llull; España
Fil: Zarepour Nasir Abadi, Mahdi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Horovitz, S. G.. National Institutes of Health; Estados Unidos
Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina - Materia
-
TIME SERIES
POINT PROCESSES
FUNCTIONAL CONNECTIVITY
RESTING STATES
DYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/145417
Ver los metadatos del registro completo
id |
CONICETDig_6038e990e92efc6a370a9f255f5e77f3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/145417 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Further results on why a point process is effective for estimating correlation between brain regionsCifre, I.Zarepour Nasir Abadi, MahdiHorovitz, S. G.Cannas, Sergio AlejandroChialvo, Dante RenatoTIME SERIESPOINT PROCESSESFUNCTIONAL CONNECTIVITYRESTING STATESDYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Signals from brain functional magnetic resonance imaging (fMRI) can be efficiently represented by a sparse spatiotemporal point process, according to a recently introduced heuristic signal processing scheme. This approach has already been validated for relevant conditions, demonstrating that it preserves and compresses a surprisingly large fraction of the signal information. Here we investigated the conditions necessary for such an approach to succeed, as well as the underlying reasons, using real fMRI data and a simulated dataset. The results show that the key lies in the temporal correlation properties of the time series under consideration. It was found that signals with slowly decaying autocorrelations are particularly suitable for this type of compression, where inflection points contain most of the information.Fil: Cifre, I.. Universitat Ramon Llull; EspañaFil: Zarepour Nasir Abadi, Mahdi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Horovitz, S. G.. National Institutes of Health; Estados UnidosFil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaPapers in Physics2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145417Cifre, I.; Zarepour Nasir Abadi, Mahdi; Horovitz, S. G.; Cannas, Sergio Alejandro; Chialvo, Dante Renato; Further results on why a point process is effective for estimating correlation between brain regions; Papers in Physics; Papers in Physics; 12; 6-2020; 1-81852-4249CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.papersinphysics.org/papersinphysics/article/view/515info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.120003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:32:02Zoai:ri.conicet.gov.ar:11336/145417instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:32:02.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Further results on why a point process is effective for estimating correlation between brain regions |
title |
Further results on why a point process is effective for estimating correlation between brain regions |
spellingShingle |
Further results on why a point process is effective for estimating correlation between brain regions Cifre, I. TIME SERIES POINT PROCESSES FUNCTIONAL CONNECTIVITY RESTING STATES DYNAMICS |
title_short |
Further results on why a point process is effective for estimating correlation between brain regions |
title_full |
Further results on why a point process is effective for estimating correlation between brain regions |
title_fullStr |
Further results on why a point process is effective for estimating correlation between brain regions |
title_full_unstemmed |
Further results on why a point process is effective for estimating correlation between brain regions |
title_sort |
Further results on why a point process is effective for estimating correlation between brain regions |
dc.creator.none.fl_str_mv |
Cifre, I. Zarepour Nasir Abadi, Mahdi Horovitz, S. G. Cannas, Sergio Alejandro Chialvo, Dante Renato |
author |
Cifre, I. |
author_facet |
Cifre, I. Zarepour Nasir Abadi, Mahdi Horovitz, S. G. Cannas, Sergio Alejandro Chialvo, Dante Renato |
author_role |
author |
author2 |
Zarepour Nasir Abadi, Mahdi Horovitz, S. G. Cannas, Sergio Alejandro Chialvo, Dante Renato |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
TIME SERIES POINT PROCESSES FUNCTIONAL CONNECTIVITY RESTING STATES DYNAMICS |
topic |
TIME SERIES POINT PROCESSES FUNCTIONAL CONNECTIVITY RESTING STATES DYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Signals from brain functional magnetic resonance imaging (fMRI) can be efficiently represented by a sparse spatiotemporal point process, according to a recently introduced heuristic signal processing scheme. This approach has already been validated for relevant conditions, demonstrating that it preserves and compresses a surprisingly large fraction of the signal information. Here we investigated the conditions necessary for such an approach to succeed, as well as the underlying reasons, using real fMRI data and a simulated dataset. The results show that the key lies in the temporal correlation properties of the time series under consideration. It was found that signals with slowly decaying autocorrelations are particularly suitable for this type of compression, where inflection points contain most of the information. Fil: Cifre, I.. Universitat Ramon Llull; España Fil: Zarepour Nasir Abadi, Mahdi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Horovitz, S. G.. National Institutes of Health; Estados Unidos Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina |
description |
Signals from brain functional magnetic resonance imaging (fMRI) can be efficiently represented by a sparse spatiotemporal point process, according to a recently introduced heuristic signal processing scheme. This approach has already been validated for relevant conditions, demonstrating that it preserves and compresses a surprisingly large fraction of the signal information. Here we investigated the conditions necessary for such an approach to succeed, as well as the underlying reasons, using real fMRI data and a simulated dataset. The results show that the key lies in the temporal correlation properties of the time series under consideration. It was found that signals with slowly decaying autocorrelations are particularly suitable for this type of compression, where inflection points contain most of the information. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/145417 Cifre, I.; Zarepour Nasir Abadi, Mahdi; Horovitz, S. G.; Cannas, Sergio Alejandro; Chialvo, Dante Renato; Further results on why a point process is effective for estimating correlation between brain regions; Papers in Physics; Papers in Physics; 12; 6-2020; 1-8 1852-4249 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/145417 |
identifier_str_mv |
Cifre, I.; Zarepour Nasir Abadi, Mahdi; Horovitz, S. G.; Cannas, Sergio Alejandro; Chialvo, Dante Renato; Further results on why a point process is effective for estimating correlation between brain regions; Papers in Physics; Papers in Physics; 12; 6-2020; 1-8 1852-4249 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.papersinphysics.org/papersinphysics/article/view/515 info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.120003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Papers in Physics |
publisher.none.fl_str_mv |
Papers in Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781929518530560 |
score |
12.982451 |