On the pros and cons of using temporal derivatives to assess brain functional connectivity
- Autores
- Ochab, Jeremi K.; Tarnowski, Wojciech; Nowak, Maciej A.; Chialvo, Dante Renato
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The study of correlations between brain regions is an important chapter of the analysis of large-scale brain spatiotemporal dynamics. In particular, novel methods suited to extract dynamic changes in mutual correlations are needed. Here we scrutinize a recently reported metric dubbed “Multiplication of Temporal Derivatives” (MTD) which is based on the temporal derivative of each time series. The formal comparison of the MTD formula with the Pearson correlation of the derivatives reveals only minor differences, which we find negligible in practice. A comparison with the sliding window Pearson correlation of the raw time series in several stationary and non-stationary set-ups, including a realistic stationary network detection, reveals lower sensitivity of derivatives to low frequency drifts and to autocorrelations but also lower signal-to-noise ratio. It does not indicate any evident mathematical advantages of the proposed metric over commonly used correlation methods.
Fil: Ochab, Jeremi K.. Universidad Jagellónica; Polonia
Fil: Tarnowski, Wojciech. Universidad Jagellónica; Polonia
Fil: Nowak, Maciej A.. Universidad Jagellónica; Polonia
Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FMRI
FUNCTIONAL CONNECTIVITY
RESTING STATE NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117218
Ver los metadatos del registro completo
id |
CONICETDig_66a1f8aead4d39a334e2a966e161a8fa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117218 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the pros and cons of using temporal derivatives to assess brain functional connectivityOchab, Jeremi K.Tarnowski, WojciechNowak, Maciej A.Chialvo, Dante RenatoFMRIFUNCTIONAL CONNECTIVITYRESTING STATE NETWORKShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The study of correlations between brain regions is an important chapter of the analysis of large-scale brain spatiotemporal dynamics. In particular, novel methods suited to extract dynamic changes in mutual correlations are needed. Here we scrutinize a recently reported metric dubbed “Multiplication of Temporal Derivatives” (MTD) which is based on the temporal derivative of each time series. The formal comparison of the MTD formula with the Pearson correlation of the derivatives reveals only minor differences, which we find negligible in practice. A comparison with the sliding window Pearson correlation of the raw time series in several stationary and non-stationary set-ups, including a realistic stationary network detection, reveals lower sensitivity of derivatives to low frequency drifts and to autocorrelations but also lower signal-to-noise ratio. It does not indicate any evident mathematical advantages of the proposed metric over commonly used correlation methods.Fil: Ochab, Jeremi K.. Universidad Jagellónica; PoloniaFil: Tarnowski, Wojciech. Universidad Jagellónica; PoloniaFil: Nowak, Maciej A.. Universidad Jagellónica; PoloniaFil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117218Ochab, Jeremi K.; Tarnowski, Wojciech; Nowak, Maciej A.; Chialvo, Dante Renato; On the pros and cons of using temporal derivatives to assess brain functional connectivity; Elsevier; Journal Neuroimag; 184; 1-2019; 577-5851053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811918318676info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2018.09.063info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:29Zoai:ri.conicet.gov.ar:11336/117218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:29.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the pros and cons of using temporal derivatives to assess brain functional connectivity |
title |
On the pros and cons of using temporal derivatives to assess brain functional connectivity |
spellingShingle |
On the pros and cons of using temporal derivatives to assess brain functional connectivity Ochab, Jeremi K. FMRI FUNCTIONAL CONNECTIVITY RESTING STATE NETWORKS |
title_short |
On the pros and cons of using temporal derivatives to assess brain functional connectivity |
title_full |
On the pros and cons of using temporal derivatives to assess brain functional connectivity |
title_fullStr |
On the pros and cons of using temporal derivatives to assess brain functional connectivity |
title_full_unstemmed |
On the pros and cons of using temporal derivatives to assess brain functional connectivity |
title_sort |
On the pros and cons of using temporal derivatives to assess brain functional connectivity |
dc.creator.none.fl_str_mv |
Ochab, Jeremi K. Tarnowski, Wojciech Nowak, Maciej A. Chialvo, Dante Renato |
author |
Ochab, Jeremi K. |
author_facet |
Ochab, Jeremi K. Tarnowski, Wojciech Nowak, Maciej A. Chialvo, Dante Renato |
author_role |
author |
author2 |
Tarnowski, Wojciech Nowak, Maciej A. Chialvo, Dante Renato |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FMRI FUNCTIONAL CONNECTIVITY RESTING STATE NETWORKS |
topic |
FMRI FUNCTIONAL CONNECTIVITY RESTING STATE NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The study of correlations between brain regions is an important chapter of the analysis of large-scale brain spatiotemporal dynamics. In particular, novel methods suited to extract dynamic changes in mutual correlations are needed. Here we scrutinize a recently reported metric dubbed “Multiplication of Temporal Derivatives” (MTD) which is based on the temporal derivative of each time series. The formal comparison of the MTD formula with the Pearson correlation of the derivatives reveals only minor differences, which we find negligible in practice. A comparison with the sliding window Pearson correlation of the raw time series in several stationary and non-stationary set-ups, including a realistic stationary network detection, reveals lower sensitivity of derivatives to low frequency drifts and to autocorrelations but also lower signal-to-noise ratio. It does not indicate any evident mathematical advantages of the proposed metric over commonly used correlation methods. Fil: Ochab, Jeremi K.. Universidad Jagellónica; Polonia Fil: Tarnowski, Wojciech. Universidad Jagellónica; Polonia Fil: Nowak, Maciej A.. Universidad Jagellónica; Polonia Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The study of correlations between brain regions is an important chapter of the analysis of large-scale brain spatiotemporal dynamics. In particular, novel methods suited to extract dynamic changes in mutual correlations are needed. Here we scrutinize a recently reported metric dubbed “Multiplication of Temporal Derivatives” (MTD) which is based on the temporal derivative of each time series. The formal comparison of the MTD formula with the Pearson correlation of the derivatives reveals only minor differences, which we find negligible in practice. A comparison with the sliding window Pearson correlation of the raw time series in several stationary and non-stationary set-ups, including a realistic stationary network detection, reveals lower sensitivity of derivatives to low frequency drifts and to autocorrelations but also lower signal-to-noise ratio. It does not indicate any evident mathematical advantages of the proposed metric over commonly used correlation methods. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117218 Ochab, Jeremi K.; Tarnowski, Wojciech; Nowak, Maciej A.; Chialvo, Dante Renato; On the pros and cons of using temporal derivatives to assess brain functional connectivity; Elsevier; Journal Neuroimag; 184; 1-2019; 577-585 1053-8119 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117218 |
identifier_str_mv |
Ochab, Jeremi K.; Tarnowski, Wojciech; Nowak, Maciej A.; Chialvo, Dante Renato; On the pros and cons of using temporal derivatives to assess brain functional connectivity; Elsevier; Journal Neuroimag; 184; 1-2019; 577-585 1053-8119 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1053811918318676 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2018.09.063 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981179997814784 |
score |
12.48226 |