Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed
- Autores
- Cifre, Ignacio; Miller Flores, Maria T.; Penalba, Lucia; Ochab, Jeremi K.; Chialvo, Dante Renato
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The center stage of neuro-imaging is currently occupied by studies of functional correlations between brain regions. These correlations define the brain functional networks, which are the most frequently used framework to represent and interpret a variety of experimental findings. In the previous study, we first demonstrated that the relatively stronger blood oxygenated level dependent (BOLD) activations contain most of the information relevant to understand functional connectivity, and subsequent work confirmed that a large compression of the original signals can be obtained without significant loss of information. In this study, we revisit the correlation properties of these epochs to define a measure of nonlinear dynamic directed functional connectivity (nldFC) across regions of interest. We show that the proposed metric provides at once, without extensive numerical complications, directed information of the functional correlations, as well as a measure of temporal lags across regions, overall offering a different and complementary perspective in the analysis of brain co-activation patterns. In this study, we provide further details for the computations of these measures and for a proof of concept based on replicating existing results from an Autistic Syndrome database, and discuss the main features and advantages of the proposed strategy for the study of brain functional correlations.
Fil: Cifre, Ignacio. Universitat Ramon Llull; España. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina
Fil: Miller Flores, Maria T.. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina
Fil: Penalba, Lucia. Universitat Ramon Llull; España
Fil: Ochab, Jeremi K.. Jagiellonian University; Polonia
Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina - Materia
-
AUTISM (ASD)
DYNAMIC FUNCTIONAL CONNECTIVITY
FMRI
FUNCTIONAL CONNECTIVITY
RESTING STATE NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155440
Ver los metadatos del registro completo
id |
CONICETDig_28d8b9195aa4b3de645f251303db9cdd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155440 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayedCifre, IgnacioMiller Flores, Maria T.Penalba, LuciaOchab, Jeremi K.Chialvo, Dante RenatoAUTISM (ASD)DYNAMIC FUNCTIONAL CONNECTIVITYFMRIFUNCTIONAL CONNECTIVITYRESTING STATE NETWORKShttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The center stage of neuro-imaging is currently occupied by studies of functional correlations between brain regions. These correlations define the brain functional networks, which are the most frequently used framework to represent and interpret a variety of experimental findings. In the previous study, we first demonstrated that the relatively stronger blood oxygenated level dependent (BOLD) activations contain most of the information relevant to understand functional connectivity, and subsequent work confirmed that a large compression of the original signals can be obtained without significant loss of information. In this study, we revisit the correlation properties of these epochs to define a measure of nonlinear dynamic directed functional connectivity (nldFC) across regions of interest. We show that the proposed metric provides at once, without extensive numerical complications, directed information of the functional correlations, as well as a measure of temporal lags across regions, overall offering a different and complementary perspective in the analysis of brain co-activation patterns. In this study, we provide further details for the computations of these measures and for a proof of concept based on replicating existing results from an Autistic Syndrome database, and discuss the main features and advantages of the proposed strategy for the study of brain functional correlations.Fil: Cifre, Ignacio. Universitat Ramon Llull; España. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; ArgentinaFil: Miller Flores, Maria T.. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; ArgentinaFil: Penalba, Lucia. Universitat Ramon Llull; EspañaFil: Ochab, Jeremi K.. Jagiellonian University; PoloniaFil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; ArgentinaFrontiers Media2021-10-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155440Cifre, Ignacio; Miller Flores, Maria T.; Penalba, Lucia; Ochab, Jeremi K.; Chialvo, Dante Renato; Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed; Frontiers Media; Frontiers in Neuroscience; 15; 700171; 12-10-2021; 1-131662-45481662-453XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnins.2021.700171/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2021.700171info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:51Zoai:ri.conicet.gov.ar:11336/155440instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:51.483CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed |
title |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed |
spellingShingle |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed Cifre, Ignacio AUTISM (ASD) DYNAMIC FUNCTIONAL CONNECTIVITY FMRI FUNCTIONAL CONNECTIVITY RESTING STATE NETWORKS |
title_short |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed |
title_full |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed |
title_fullStr |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed |
title_full_unstemmed |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed |
title_sort |
Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed |
dc.creator.none.fl_str_mv |
Cifre, Ignacio Miller Flores, Maria T. Penalba, Lucia Ochab, Jeremi K. Chialvo, Dante Renato |
author |
Cifre, Ignacio |
author_facet |
Cifre, Ignacio Miller Flores, Maria T. Penalba, Lucia Ochab, Jeremi K. Chialvo, Dante Renato |
author_role |
author |
author2 |
Miller Flores, Maria T. Penalba, Lucia Ochab, Jeremi K. Chialvo, Dante Renato |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
AUTISM (ASD) DYNAMIC FUNCTIONAL CONNECTIVITY FMRI FUNCTIONAL CONNECTIVITY RESTING STATE NETWORKS |
topic |
AUTISM (ASD) DYNAMIC FUNCTIONAL CONNECTIVITY FMRI FUNCTIONAL CONNECTIVITY RESTING STATE NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The center stage of neuro-imaging is currently occupied by studies of functional correlations between brain regions. These correlations define the brain functional networks, which are the most frequently used framework to represent and interpret a variety of experimental findings. In the previous study, we first demonstrated that the relatively stronger blood oxygenated level dependent (BOLD) activations contain most of the information relevant to understand functional connectivity, and subsequent work confirmed that a large compression of the original signals can be obtained without significant loss of information. In this study, we revisit the correlation properties of these epochs to define a measure of nonlinear dynamic directed functional connectivity (nldFC) across regions of interest. We show that the proposed metric provides at once, without extensive numerical complications, directed information of the functional correlations, as well as a measure of temporal lags across regions, overall offering a different and complementary perspective in the analysis of brain co-activation patterns. In this study, we provide further details for the computations of these measures and for a proof of concept based on replicating existing results from an Autistic Syndrome database, and discuss the main features and advantages of the proposed strategy for the study of brain functional correlations. Fil: Cifre, Ignacio. Universitat Ramon Llull; España. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina Fil: Miller Flores, Maria T.. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina Fil: Penalba, Lucia. Universitat Ramon Llull; España Fil: Ochab, Jeremi K.. Jagiellonian University; Polonia Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; Argentina |
description |
The center stage of neuro-imaging is currently occupied by studies of functional correlations between brain regions. These correlations define the brain functional networks, which are the most frequently used framework to represent and interpret a variety of experimental findings. In the previous study, we first demonstrated that the relatively stronger blood oxygenated level dependent (BOLD) activations contain most of the information relevant to understand functional connectivity, and subsequent work confirmed that a large compression of the original signals can be obtained without significant loss of information. In this study, we revisit the correlation properties of these epochs to define a measure of nonlinear dynamic directed functional connectivity (nldFC) across regions of interest. We show that the proposed metric provides at once, without extensive numerical complications, directed information of the functional correlations, as well as a measure of temporal lags across regions, overall offering a different and complementary perspective in the analysis of brain co-activation patterns. In this study, we provide further details for the computations of these measures and for a proof of concept based on replicating existing results from an Autistic Syndrome database, and discuss the main features and advantages of the proposed strategy for the study of brain functional correlations. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155440 Cifre, Ignacio; Miller Flores, Maria T.; Penalba, Lucia; Ochab, Jeremi K.; Chialvo, Dante Renato; Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed; Frontiers Media; Frontiers in Neuroscience; 15; 700171; 12-10-2021; 1-13 1662-4548 1662-453X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/155440 |
identifier_str_mv |
Cifre, Ignacio; Miller Flores, Maria T.; Penalba, Lucia; Ochab, Jeremi K.; Chialvo, Dante Renato; Revisiting nonlinear functional brain co-activations: Directed, dynamic, and delayed; Frontiers Media; Frontiers in Neuroscience; 15; 700171; 12-10-2021; 1-13 1662-4548 1662-453X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnins.2021.700171/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2021.700171 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981141737373696 |
score |
12.48226 |