Estimación robusta en modelos parcialmente lineales generalizados
- Autores
- Rodríguez, Daniela Andrea
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Boente Boente, Graciela Lina
- Descripción
- En esta tesis, introducimos una nueva clase de estimadores robustos para las componentes paramétricas y noparamétricas bajo dos modelos parcialmente lineales generalizados. En el primero, las observaciones independientes (yi, xi, ti), 1 = i = n satisfacen yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), para una función de distribución F y una función de vínculo H conocidas, donde ti e IR, xi e IR^p. La función n : IR --IR y el parámetro ß son las cantidades a estimar. Los estimadores robustos se basan en un procedimiento en dos pasos en el que valores grandes de la deviance o de los residuos de Pearson se controlan a través de una función de escores acotada. Los estimadores robustos de ß resultan ser n^1/2-consistentes y asintóticamente normales. El comportamiento de estos estimadores se compara con el de los estimadores clásicamente usados, a través de un estudio de Monte Carlo. Por otra parte, la función de influencia empírica permite estudiar la sensibilidad de los estimadores. El modelo generalizado parcialmente lineal de índice simple, generaliza el anterior pues las observaciones independientes son tales que yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), donde ahora ti e IR^q, xi e IR^p y la función ß : IR -- IR y los parámetros ß y a (|| a|| =1) son desconocidos y se desean estimar. Introducimos dos familias de estimadores robustos que resultan ser consistentes y asintóticamente normales. Calculamos también su función de influencia empírica. Todas las propuestas dadas mejoran el comportamiento de los estimadores clásicos en presencia de observaciones atípicas.
In this thesis, we introduce a new class of robust estimates for the parametric and nonparametric components under two generalized partially linear model. In the first one, the data (yi, xi, ti), (yi, xi, ti), 1 = i = n, are modeled by yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), for some known distribution function F and link function H, where ti e IR, xi e IR^p. The function n : IR--IR and the parameter ß are unknown and to be estimated. The robust estimators are based on a two step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. It is shown that the estimates of ß are root-n consistent and asymptotically normal. Through a Monte Carlo study, we compare the performance of these estimators with that of the classical ones. Besides, through their empirical influence function we study the sensitivity of the estimators. The generalized partially linear single index model generalizes the previous one since the independent observations are such that yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), where now ti e IR^q, xi e IR^p and ß : IR -- IR, ß y a (|| a|| =1) are the unknown parameters to be estimated. Two families of robust estimators are introduced which turn out to be consistent and asymptotically normally distributed. Their empirical influence function is also computed. The robust proposals improve the behavior of the classical ones when outliers are present.
Fil: Rodríguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Materia
-
ESTIMADORES DE NUCLEOS
ESTIMADORES ROBUSTOS
MODELOS PARCIALMENTE LINEALES
SUAVIZADORES
TASA DE CONVERGENCIA
KERNEL WEIGHTS
PARTLY LINEAR MODELS
RATE OF CONVERGENCE
ROBUST ESTIMATION
SMOOTHING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- tesis:tesis_n4240_Rodriguez
Ver los metadatos del registro completo
id |
BDUBAFCEN_f72818f2c670aaeed5ce2f85489f8c46 |
---|---|
oai_identifier_str |
tesis:tesis_n4240_Rodriguez |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Estimación robusta en modelos parcialmente lineales generalizadosRobust estimation in generalized partially linear modelsRodríguez, Daniela AndreaESTIMADORES DE NUCLEOSESTIMADORES ROBUSTOSMODELOS PARCIALMENTE LINEALESSUAVIZADORESTASA DE CONVERGENCIAKERNEL WEIGHTSPARTLY LINEAR MODELSRATE OF CONVERGENCEROBUST ESTIMATIONSMOOTHINGEn esta tesis, introducimos una nueva clase de estimadores robustos para las componentes paramétricas y noparamétricas bajo dos modelos parcialmente lineales generalizados. En el primero, las observaciones independientes (yi, xi, ti), 1 = i = n satisfacen yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), para una función de distribución F y una función de vínculo H conocidas, donde ti e IR, xi e IR^p. La función n : IR --IR y el parámetro ß son las cantidades a estimar. Los estimadores robustos se basan en un procedimiento en dos pasos en el que valores grandes de la deviance o de los residuos de Pearson se controlan a través de una función de escores acotada. Los estimadores robustos de ß resultan ser n^1/2-consistentes y asintóticamente normales. El comportamiento de estos estimadores se compara con el de los estimadores clásicamente usados, a través de un estudio de Monte Carlo. Por otra parte, la función de influencia empírica permite estudiar la sensibilidad de los estimadores. El modelo generalizado parcialmente lineal de índice simple, generaliza el anterior pues las observaciones independientes son tales que yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), donde ahora ti e IR^q, xi e IR^p y la función ß : IR -- IR y los parámetros ß y a (|| a|| =1) son desconocidos y se desean estimar. Introducimos dos familias de estimadores robustos que resultan ser consistentes y asintóticamente normales. Calculamos también su función de influencia empírica. Todas las propuestas dadas mejoran el comportamiento de los estimadores clásicos en presencia de observaciones atípicas.In this thesis, we introduce a new class of robust estimates for the parametric and nonparametric components under two generalized partially linear model. In the first one, the data (yi, xi, ti), (yi, xi, ti), 1 = i = n, are modeled by yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), for some known distribution function F and link function H, where ti e IR, xi e IR^p. The function n : IR--IR and the parameter ß are unknown and to be estimated. The robust estimators are based on a two step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. It is shown that the estimates of ß are root-n consistent and asymptotically normal. Through a Monte Carlo study, we compare the performance of these estimators with that of the classical ones. Besides, through their empirical influence function we study the sensitivity of the estimators. The generalized partially linear single index model generalizes the previous one since the independent observations are such that yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), where now ti e IR^q, xi e IR^p and ß : IR -- IR, ß y a (|| a|| =1) are the unknown parameters to be estimated. Two families of robust estimators are introduced which turn out to be consistent and asymptotically normally distributed. Their empirical influence function is also computed. The robust proposals improve the behavior of the classical ones when outliers are present.Fil: Rodríguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesBoente Boente, Graciela Lina2007info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4240_Rodriguezspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-11T10:19:25Ztesis:tesis_n4240_RodriguezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-11 10:19:29.0Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Estimación robusta en modelos parcialmente lineales generalizados Robust estimation in generalized partially linear models |
title |
Estimación robusta en modelos parcialmente lineales generalizados |
spellingShingle |
Estimación robusta en modelos parcialmente lineales generalizados Rodríguez, Daniela Andrea ESTIMADORES DE NUCLEOS ESTIMADORES ROBUSTOS MODELOS PARCIALMENTE LINEALES SUAVIZADORES TASA DE CONVERGENCIA KERNEL WEIGHTS PARTLY LINEAR MODELS RATE OF CONVERGENCE ROBUST ESTIMATION SMOOTHING |
title_short |
Estimación robusta en modelos parcialmente lineales generalizados |
title_full |
Estimación robusta en modelos parcialmente lineales generalizados |
title_fullStr |
Estimación robusta en modelos parcialmente lineales generalizados |
title_full_unstemmed |
Estimación robusta en modelos parcialmente lineales generalizados |
title_sort |
Estimación robusta en modelos parcialmente lineales generalizados |
dc.creator.none.fl_str_mv |
Rodríguez, Daniela Andrea |
author |
Rodríguez, Daniela Andrea |
author_facet |
Rodríguez, Daniela Andrea |
author_role |
author |
dc.contributor.none.fl_str_mv |
Boente Boente, Graciela Lina |
dc.subject.none.fl_str_mv |
ESTIMADORES DE NUCLEOS ESTIMADORES ROBUSTOS MODELOS PARCIALMENTE LINEALES SUAVIZADORES TASA DE CONVERGENCIA KERNEL WEIGHTS PARTLY LINEAR MODELS RATE OF CONVERGENCE ROBUST ESTIMATION SMOOTHING |
topic |
ESTIMADORES DE NUCLEOS ESTIMADORES ROBUSTOS MODELOS PARCIALMENTE LINEALES SUAVIZADORES TASA DE CONVERGENCIA KERNEL WEIGHTS PARTLY LINEAR MODELS RATE OF CONVERGENCE ROBUST ESTIMATION SMOOTHING |
dc.description.none.fl_txt_mv |
En esta tesis, introducimos una nueva clase de estimadores robustos para las componentes paramétricas y noparamétricas bajo dos modelos parcialmente lineales generalizados. En el primero, las observaciones independientes (yi, xi, ti), 1 = i = n satisfacen yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), para una función de distribución F y una función de vínculo H conocidas, donde ti e IR, xi e IR^p. La función n : IR --IR y el parámetro ß son las cantidades a estimar. Los estimadores robustos se basan en un procedimiento en dos pasos en el que valores grandes de la deviance o de los residuos de Pearson se controlan a través de una función de escores acotada. Los estimadores robustos de ß resultan ser n^1/2-consistentes y asintóticamente normales. El comportamiento de estos estimadores se compara con el de los estimadores clásicamente usados, a través de un estudio de Monte Carlo. Por otra parte, la función de influencia empírica permite estudiar la sensibilidad de los estimadores. El modelo generalizado parcialmente lineal de índice simple, generaliza el anterior pues las observaciones independientes son tales que yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), donde ahora ti e IR^q, xi e IR^p y la función ß : IR -- IR y los parámetros ß y a (|| a|| =1) son desconocidos y se desean estimar. Introducimos dos familias de estimadores robustos que resultan ser consistentes y asintóticamente normales. Calculamos también su función de influencia empírica. Todas las propuestas dadas mejoran el comportamiento de los estimadores clásicos en presencia de observaciones atípicas. In this thesis, we introduce a new class of robust estimates for the parametric and nonparametric components under two generalized partially linear model. In the first one, the data (yi, xi, ti), (yi, xi, ti), 1 = i = n, are modeled by yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), for some known distribution function F and link function H, where ti e IR, xi e IR^p. The function n : IR--IR and the parameter ß are unknown and to be estimated. The robust estimators are based on a two step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. It is shown that the estimates of ß are root-n consistent and asymptotically normal. Through a Monte Carlo study, we compare the performance of these estimators with that of the classical ones. Besides, through their empirical influence function we study the sensitivity of the estimators. The generalized partially linear single index model generalizes the previous one since the independent observations are such that yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), where now ti e IR^q, xi e IR^p and ß : IR -- IR, ß y a (|| a|| =1) are the unknown parameters to be estimated. Two families of robust estimators are introduced which turn out to be consistent and asymptotically normally distributed. Their empirical influence function is also computed. The robust proposals improve the behavior of the classical ones when outliers are present. Fil: Rodríguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
En esta tesis, introducimos una nueva clase de estimadores robustos para las componentes paramétricas y noparamétricas bajo dos modelos parcialmente lineales generalizados. En el primero, las observaciones independientes (yi, xi, ti), 1 = i = n satisfacen yi| (xi, ti) ~ F (·, µi) con µi = H (n(ti) + xti ß), para una función de distribución F y una función de vínculo H conocidas, donde ti e IR, xi e IR^p. La función n : IR --IR y el parámetro ß son las cantidades a estimar. Los estimadores robustos se basan en un procedimiento en dos pasos en el que valores grandes de la deviance o de los residuos de Pearson se controlan a través de una función de escores acotada. Los estimadores robustos de ß resultan ser n^1/2-consistentes y asintóticamente normales. El comportamiento de estos estimadores se compara con el de los estimadores clásicamente usados, a través de un estudio de Monte Carlo. Por otra parte, la función de influencia empírica permite estudiar la sensibilidad de los estimadores. El modelo generalizado parcialmente lineal de índice simple, generaliza el anterior pues las observaciones independientes son tales que yi| (xi, ti) ~ F (·, µi) con µi = H (n(a tti) + xtiß), donde ahora ti e IR^q, xi e IR^p y la función ß : IR -- IR y los parámetros ß y a (|| a|| =1) son desconocidos y se desean estimar. Introducimos dos familias de estimadores robustos que resultan ser consistentes y asintóticamente normales. Calculamos también su función de influencia empírica. Todas las propuestas dadas mejoran el comportamiento de los estimadores clásicos en presencia de observaciones atípicas. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/tesis_n4240_Rodriguez |
url |
https://hdl.handle.net/20.500.12110/tesis_n4240_Rodriguez |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842974978439380992 |
score |
12.993085 |