On the asymptotic behavior of general projection-pursuit estimators under the common principal components model

Autores
Boente Boente, Graciela Lina; Molina, Fernanda Julieta; Sued, Raquel Mariela
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The common principal components model for several groups of multivariate observations assumes equal principal axes among the groups. Robust estimators can be defined replacing the sample variance by a robust dispersion measure. This paper studies the asymptotic distribution of robust projection-pursuit estimators under a common principal components model.
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Molina, Fernanda Julieta. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Asymptotic Distribution
Common Principal Components
Projection-Pursuit
Robust Estimation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16549

id CONICETDig_cb15c2614967ac6e897e8795ef5eef8f
oai_identifier_str oai:ri.conicet.gov.ar:11336/16549
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the asymptotic behavior of general projection-pursuit estimators under the common principal components modelBoente Boente, Graciela LinaMolina, Fernanda JulietaSued, Raquel MarielaAsymptotic DistributionCommon Principal ComponentsProjection-PursuitRobust Estimationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The common principal components model for several groups of multivariate observations assumes equal principal axes among the groups. Robust estimators can be defined replacing the sample variance by a robust dispersion measure. This paper studies the asymptotic distribution of robust projection-pursuit estimators under a common principal components model.Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Molina, Fernanda Julieta. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16549Boente Boente, Graciela Lina; Molina, Fernanda Julieta; Sued, Raquel Mariela; On the asymptotic behavior of general projection-pursuit estimators under the common principal components model; Elsevier Science; Statistics & Probability Letters; 80; 3-4; 2-2010; 228-2350167-7152enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2009.10.011info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167715209003976info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:12Zoai:ri.conicet.gov.ar:11336/16549instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:12.519CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
title On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
spellingShingle On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
Boente Boente, Graciela Lina
Asymptotic Distribution
Common Principal Components
Projection-Pursuit
Robust Estimation
title_short On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
title_full On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
title_fullStr On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
title_full_unstemmed On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
title_sort On the asymptotic behavior of general projection-pursuit estimators under the common principal components model
dc.creator.none.fl_str_mv Boente Boente, Graciela Lina
Molina, Fernanda Julieta
Sued, Raquel Mariela
author Boente Boente, Graciela Lina
author_facet Boente Boente, Graciela Lina
Molina, Fernanda Julieta
Sued, Raquel Mariela
author_role author
author2 Molina, Fernanda Julieta
Sued, Raquel Mariela
author2_role author
author
dc.subject.none.fl_str_mv Asymptotic Distribution
Common Principal Components
Projection-Pursuit
Robust Estimation
topic Asymptotic Distribution
Common Principal Components
Projection-Pursuit
Robust Estimation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The common principal components model for several groups of multivariate observations assumes equal principal axes among the groups. Robust estimators can be defined replacing the sample variance by a robust dispersion measure. This paper studies the asymptotic distribution of robust projection-pursuit estimators under a common principal components model.
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Molina, Fernanda Julieta. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The common principal components model for several groups of multivariate observations assumes equal principal axes among the groups. Robust estimators can be defined replacing the sample variance by a robust dispersion measure. This paper studies the asymptotic distribution of robust projection-pursuit estimators under a common principal components model.
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16549
Boente Boente, Graciela Lina; Molina, Fernanda Julieta; Sued, Raquel Mariela; On the asymptotic behavior of general projection-pursuit estimators under the common principal components model; Elsevier Science; Statistics & Probability Letters; 80; 3-4; 2-2010; 228-235
0167-7152
url http://hdl.handle.net/11336/16549
identifier_str_mv Boente Boente, Graciela Lina; Molina, Fernanda Julieta; Sued, Raquel Mariela; On the asymptotic behavior of general projection-pursuit estimators under the common principal components model; Elsevier Science; Statistics & Probability Letters; 80; 3-4; 2-2010; 228-235
0167-7152
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2009.10.011
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167715209003976
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980383423987712
score 12.993085