Robust estimation for nonparametric generalized regression
- Autores
- Bianco, Ana Maria; Boente Boente, Graciela Lina; Sombielle, Susana
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized linear models. Robust estimators bounding either large values of the deviance or of the Pearson residuals are introduced and their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and Gamma distributions, the finite properties of the proposed procedures are investigated and their performance is compared with that of the classical ones. A resistant cross-validation method to choose the smoothing parameter is also considered.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sombielle, Susana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnologica Nacional; Argentina - Materia
-
Asymptotic Properties
Nonparametric Generalized Regression
Robust Estimation
Smoothing Techniques - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14907
Ver los metadatos del registro completo
id |
CONICETDig_032fced7b9ae32dde6fa180de98ca810 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14907 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust estimation for nonparametric generalized regressionBianco, Ana MariaBoente Boente, Graciela LinaSombielle, SusanaAsymptotic PropertiesNonparametric Generalized RegressionRobust EstimationSmoothing Techniqueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized linear models. Robust estimators bounding either large values of the deviance or of the Pearson residuals are introduced and their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and Gamma distributions, the finite properties of the proposed procedures are investigated and their performance is compared with that of the classical ones. A resistant cross-validation method to choose the smoothing parameter is also considered.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sombielle, Susana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnologica Nacional; ArgentinaElsevier2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14907Bianco, Ana Maria; Boente Boente, Graciela Lina; Sombielle, Susana; Robust estimation for nonparametric generalized regression; Elsevier; Statistics & Probability Letters; 81; 12; 12-2011; 1986-19940167-7152enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167715211002719info:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2011.08.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:36Zoai:ri.conicet.gov.ar:11336/14907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:36.383CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust estimation for nonparametric generalized regression |
title |
Robust estimation for nonparametric generalized regression |
spellingShingle |
Robust estimation for nonparametric generalized regression Bianco, Ana Maria Asymptotic Properties Nonparametric Generalized Regression Robust Estimation Smoothing Techniques |
title_short |
Robust estimation for nonparametric generalized regression |
title_full |
Robust estimation for nonparametric generalized regression |
title_fullStr |
Robust estimation for nonparametric generalized regression |
title_full_unstemmed |
Robust estimation for nonparametric generalized regression |
title_sort |
Robust estimation for nonparametric generalized regression |
dc.creator.none.fl_str_mv |
Bianco, Ana Maria Boente Boente, Graciela Lina Sombielle, Susana |
author |
Bianco, Ana Maria |
author_facet |
Bianco, Ana Maria Boente Boente, Graciela Lina Sombielle, Susana |
author_role |
author |
author2 |
Boente Boente, Graciela Lina Sombielle, Susana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Asymptotic Properties Nonparametric Generalized Regression Robust Estimation Smoothing Techniques |
topic |
Asymptotic Properties Nonparametric Generalized Regression Robust Estimation Smoothing Techniques |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized linear models. Robust estimators bounding either large values of the deviance or of the Pearson residuals are introduced and their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and Gamma distributions, the finite properties of the proposed procedures are investigated and their performance is compared with that of the classical ones. A resistant cross-validation method to choose the smoothing parameter is also considered. Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sombielle, Susana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnologica Nacional; Argentina |
description |
This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized linear models. Robust estimators bounding either large values of the deviance or of the Pearson residuals are introduced and their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and Gamma distributions, the finite properties of the proposed procedures are investigated and their performance is compared with that of the classical ones. A resistant cross-validation method to choose the smoothing parameter is also considered. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14907 Bianco, Ana Maria; Boente Boente, Graciela Lina; Sombielle, Susana; Robust estimation for nonparametric generalized regression; Elsevier; Statistics & Probability Letters; 81; 12; 12-2011; 1986-1994 0167-7152 |
url |
http://hdl.handle.net/11336/14907 |
identifier_str_mv |
Bianco, Ana Maria; Boente Boente, Graciela Lina; Sombielle, Susana; Robust estimation for nonparametric generalized regression; Elsevier; Statistics & Probability Letters; 81; 12; 12-2011; 1986-1994 0167-7152 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167715211002719 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2011.08.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613482627989504 |
score |
13.069144 |