Direct estimates for adaptive time-stepping finite element methods

Autores
Actis, Marcelo Jesús; Gaspoz, Fernando Daniel; Morin, Pedro; Schneider, Cornelia; Schneider, Nick
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study direct estimates for adaptive time-stepping finite element methods for time-dependent partial differential equations. Our results generalize previous findings from “On approximation classesfor adaptive time-stepping finite element methods” by Actis et al. (2023), where the approximation error was only measured in L2([0, T ], L2( )). In particular, we now also cover the error norms L∞([0, T ], L2( )) and L2([0, T ], H1( )) which are more natural in this context.
Fil: Actis, Marcelo Jesús. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Gaspoz, Fernando Daniel. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Morin, Pedro. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Schneider, Cornelia. Universitat Erlangen Nuremberg; Alemania
Fil: Schneider, Nick. Universitat Erlangen Nuremberg; Alemania
Materia
DIRECT ESTIMATES
APPROXIMATION CLASSES
BESOV SPACES
ADATIVE TIME-STEPPING FINITE ELEMENT METHODS
NEAR-BEST APPROXIMATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267151

id CONICETDig_6465b0170a9020a35af881899f6a6ff7
oai_identifier_str oai:ri.conicet.gov.ar:11336/267151
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Direct estimates for adaptive time-stepping finite element methodsActis, Marcelo JesúsGaspoz, Fernando DanielMorin, PedroSchneider, CorneliaSchneider, NickDIRECT ESTIMATESAPPROXIMATION CLASSESBESOV SPACESADATIVE TIME-STEPPING FINITE ELEMENT METHODSNEAR-BEST APPROXIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study direct estimates for adaptive time-stepping finite element methods for time-dependent partial differential equations. Our results generalize previous findings from “On approximation classesfor adaptive time-stepping finite element methods” by Actis et al. (2023), where the approximation error was only measured in L2([0, T ], L2( )). In particular, we now also cover the error norms L∞([0, T ], L2( )) and L2([0, T ], H1( )) which are more natural in this context.Fil: Actis, Marcelo Jesús. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Gaspoz, Fernando Daniel. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Morin, Pedro. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Schneider, Cornelia. Universitat Erlangen Nuremberg; AlemaniaFil: Schneider, Nick. Universitat Erlangen Nuremberg; AlemaniaAcademic Press Inc Elsevier Science2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267151Actis, Marcelo Jesús; Gaspoz, Fernando Daniel; Morin, Pedro; Schneider, Cornelia; Schneider, Nick; Direct estimates for adaptive time-stepping finite element methods; Academic Press Inc Elsevier Science; Journal Of Complexity; 87; 4-2025; 1-140885-064XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0885064X24000955info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2024.101918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:19:04Zoai:ri.conicet.gov.ar:11336/267151instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:19:05.287CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Direct estimates for adaptive time-stepping finite element methods
title Direct estimates for adaptive time-stepping finite element methods
spellingShingle Direct estimates for adaptive time-stepping finite element methods
Actis, Marcelo Jesús
DIRECT ESTIMATES
APPROXIMATION CLASSES
BESOV SPACES
ADATIVE TIME-STEPPING FINITE ELEMENT METHODS
NEAR-BEST APPROXIMATION
title_short Direct estimates for adaptive time-stepping finite element methods
title_full Direct estimates for adaptive time-stepping finite element methods
title_fullStr Direct estimates for adaptive time-stepping finite element methods
title_full_unstemmed Direct estimates for adaptive time-stepping finite element methods
title_sort Direct estimates for adaptive time-stepping finite element methods
dc.creator.none.fl_str_mv Actis, Marcelo Jesús
Gaspoz, Fernando Daniel
Morin, Pedro
Schneider, Cornelia
Schneider, Nick
author Actis, Marcelo Jesús
author_facet Actis, Marcelo Jesús
Gaspoz, Fernando Daniel
Morin, Pedro
Schneider, Cornelia
Schneider, Nick
author_role author
author2 Gaspoz, Fernando Daniel
Morin, Pedro
Schneider, Cornelia
Schneider, Nick
author2_role author
author
author
author
dc.subject.none.fl_str_mv DIRECT ESTIMATES
APPROXIMATION CLASSES
BESOV SPACES
ADATIVE TIME-STEPPING FINITE ELEMENT METHODS
NEAR-BEST APPROXIMATION
topic DIRECT ESTIMATES
APPROXIMATION CLASSES
BESOV SPACES
ADATIVE TIME-STEPPING FINITE ELEMENT METHODS
NEAR-BEST APPROXIMATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study direct estimates for adaptive time-stepping finite element methods for time-dependent partial differential equations. Our results generalize previous findings from “On approximation classesfor adaptive time-stepping finite element methods” by Actis et al. (2023), where the approximation error was only measured in L2([0, T ], L2( )). In particular, we now also cover the error norms L∞([0, T ], L2( )) and L2([0, T ], H1( )) which are more natural in this context.
Fil: Actis, Marcelo Jesús. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Gaspoz, Fernando Daniel. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Morin, Pedro. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Schneider, Cornelia. Universitat Erlangen Nuremberg; Alemania
Fil: Schneider, Nick. Universitat Erlangen Nuremberg; Alemania
description We study direct estimates for adaptive time-stepping finite element methods for time-dependent partial differential equations. Our results generalize previous findings from “On approximation classesfor adaptive time-stepping finite element methods” by Actis et al. (2023), where the approximation error was only measured in L2([0, T ], L2( )). In particular, we now also cover the error norms L∞([0, T ], L2( )) and L2([0, T ], H1( )) which are more natural in this context.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267151
Actis, Marcelo Jesús; Gaspoz, Fernando Daniel; Morin, Pedro; Schneider, Cornelia; Schneider, Nick; Direct estimates for adaptive time-stepping finite element methods; Academic Press Inc Elsevier Science; Journal Of Complexity; 87; 4-2025; 1-14
0885-064X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267151
identifier_str_mv Actis, Marcelo Jesús; Gaspoz, Fernando Daniel; Morin, Pedro; Schneider, Cornelia; Schneider, Nick; Direct estimates for adaptive time-stepping finite element methods; Academic Press Inc Elsevier Science; Journal Of Complexity; 87; 4-2025; 1-14
0885-064X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0885064X24000955
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2024.101918
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781663398330368
score 12.982451