Approximation classes for adaptive time-stepping finite element methods
- Autores
- Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Schneider, Cornelia. Universitat Erlangen Nuremberg; Alemania - Materia
-
APPROXIMATION CLASSES
ADAPTIVIVITY
TIME-STEPPING FINITE ELEMENT METHODS
BESOV SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167321
Ver los metadatos del registro completo
| id |
CONICETDig_0a91b537539c8cf6c96b0c457c01120d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167321 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Approximation classes for adaptive time-stepping finite element methodsActis, Marcelo JesúsMorin, PedroSchneider, CorneliaAPPROXIMATION CLASSESADAPTIVIVITYTIME-STEPPING FINITE ELEMENT METHODSBESOV SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Schneider, Cornelia. Universitat Erlangen Nuremberg; AlemaniaCornell University2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167321Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia; Approximation classes for adaptive time-stepping finite element methods; Cornell University; ArXiv.org; 3-2021; 1-312331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.06088info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.06088info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:05:30Zoai:ri.conicet.gov.ar:11336/167321instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:05:30.673CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Approximation classes for adaptive time-stepping finite element methods |
| title |
Approximation classes for adaptive time-stepping finite element methods |
| spellingShingle |
Approximation classes for adaptive time-stepping finite element methods Actis, Marcelo Jesús APPROXIMATION CLASSES ADAPTIVIVITY TIME-STEPPING FINITE ELEMENT METHODS BESOV SPACES |
| title_short |
Approximation classes for adaptive time-stepping finite element methods |
| title_full |
Approximation classes for adaptive time-stepping finite element methods |
| title_fullStr |
Approximation classes for adaptive time-stepping finite element methods |
| title_full_unstemmed |
Approximation classes for adaptive time-stepping finite element methods |
| title_sort |
Approximation classes for adaptive time-stepping finite element methods |
| dc.creator.none.fl_str_mv |
Actis, Marcelo Jesús Morin, Pedro Schneider, Cornelia |
| author |
Actis, Marcelo Jesús |
| author_facet |
Actis, Marcelo Jesús Morin, Pedro Schneider, Cornelia |
| author_role |
author |
| author2 |
Morin, Pedro Schneider, Cornelia |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
APPROXIMATION CLASSES ADAPTIVIVITY TIME-STEPPING FINITE ELEMENT METHODS BESOV SPACES |
| topic |
APPROXIMATION CLASSES ADAPTIVIVITY TIME-STEPPING FINITE ELEMENT METHODS BESOV SPACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates. Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Schneider, Cornelia. Universitat Erlangen Nuremberg; Alemania |
| description |
We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167321 Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia; Approximation classes for adaptive time-stepping finite element methods; Cornell University; ArXiv.org; 3-2021; 1-31 2331-8422 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/167321 |
| identifier_str_mv |
Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia; Approximation classes for adaptive time-stepping finite element methods; Cornell University; ArXiv.org; 3-2021; 1-31 2331-8422 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.06088 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.06088 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Cornell University |
| publisher.none.fl_str_mv |
Cornell University |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782407977467904 |
| score |
12.982451 |