Approximation classes for adaptive time-stepping finite element methods

Autores
Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Schneider, Cornelia. Universitat Erlangen Nuremberg; Alemania
Materia
APPROXIMATION CLASSES
ADAPTIVIVITY
TIME-STEPPING FINITE ELEMENT METHODS
BESOV SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167321

id CONICETDig_0a91b537539c8cf6c96b0c457c01120d
oai_identifier_str oai:ri.conicet.gov.ar:11336/167321
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Approximation classes for adaptive time-stepping finite element methodsActis, Marcelo JesúsMorin, PedroSchneider, CorneliaAPPROXIMATION CLASSESADAPTIVIVITYTIME-STEPPING FINITE ELEMENT METHODSBESOV SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Schneider, Cornelia. Universitat Erlangen Nuremberg; AlemaniaCornell University2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167321Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia; Approximation classes for adaptive time-stepping finite element methods; Cornell University; ArXiv.org; 3-2021; 1-312331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.06088info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.06088info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:17Zoai:ri.conicet.gov.ar:11336/167321instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:17.717CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Approximation classes for adaptive time-stepping finite element methods
title Approximation classes for adaptive time-stepping finite element methods
spellingShingle Approximation classes for adaptive time-stepping finite element methods
Actis, Marcelo Jesús
APPROXIMATION CLASSES
ADAPTIVIVITY
TIME-STEPPING FINITE ELEMENT METHODS
BESOV SPACES
title_short Approximation classes for adaptive time-stepping finite element methods
title_full Approximation classes for adaptive time-stepping finite element methods
title_fullStr Approximation classes for adaptive time-stepping finite element methods
title_full_unstemmed Approximation classes for adaptive time-stepping finite element methods
title_sort Approximation classes for adaptive time-stepping finite element methods
dc.creator.none.fl_str_mv Actis, Marcelo Jesús
Morin, Pedro
Schneider, Cornelia
author Actis, Marcelo Jesús
author_facet Actis, Marcelo Jesús
Morin, Pedro
Schneider, Cornelia
author_role author
author2 Morin, Pedro
Schneider, Cornelia
author2_role author
author
dc.subject.none.fl_str_mv APPROXIMATION CLASSES
ADAPTIVIVITY
TIME-STEPPING FINITE ELEMENT METHODS
BESOV SPACES
topic APPROXIMATION CLASSES
ADAPTIVIVITY
TIME-STEPPING FINITE ELEMENT METHODS
BESOV SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Schneider, Cornelia. Universitat Erlangen Nuremberg; Alemania
description We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in L2([0, T) × Ω) and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167321
Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia; Approximation classes for adaptive time-stepping finite element methods; Cornell University; ArXiv.org; 3-2021; 1-31
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167321
identifier_str_mv Actis, Marcelo Jesús; Morin, Pedro; Schneider, Cornelia; Approximation classes for adaptive time-stepping finite element methods; Cornell University; ArXiv.org; 3-2021; 1-31
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2103.06088
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2103.06088
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cornell University
publisher.none.fl_str_mv Cornell University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269997334790144
score 13.13397