Structure of homogeneous Ricci solitons and the Alekseevskii conjecture
- Autores
- Lafuente, Ramiro Augusto; Lauret, Jorge Ruben
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We bring new insights into the longstanding Alekseevskii conjecture, namely that any connected homogeneous Einstein manifold of negative scalar curvature is diffeomorphic to a Euclidean space, by proving structural results which are actually valid for any homogeneous expanding Ricci soliton, and generalize many well-known results on Einstein solvmanifolds, solvsolitons, and nilsolitons. We obtain that any homogeneous expanding Ricci soliton M=G/KM=G/K is diffeomorphic to a product U/K×NU/K×N, where UU is a maximal reductive Lie subgroup of GG and NN is the maximal nilpotent normal subgroup of GG, such that the metric restricted to NN is a nilsoliton. Moreover, strong compatibility conditions between the metric and the action of UU on NN by conjugation must hold, including a nice formula for the Ricci operator of the metric restricted to U/KU/K. Our main tools come from geometric invariant theory. As an application, we give many Lie theoretical characterizations of algebraic solitons, as well as a proof of the fact that the following a priori much stronger result is actually equivalent to Alekseevskii’s conjecture: Any expanding algebraic soliton is diffeomorphic to a Euclidean space.
Fil: Lafuente, Ramiro Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina - Materia
-
RICCI SOLITONS
HOMOGENEOUS MANIFOLDS
ALEKSEEVSKII CONJECTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8500
Ver los metadatos del registro completo
| id |
CONICETDig_79241d4c08201539d6f9cec4782d4af4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8500 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Structure of homogeneous Ricci solitons and the Alekseevskii conjectureLafuente, Ramiro AugustoLauret, Jorge RubenRICCI SOLITONSHOMOGENEOUS MANIFOLDSALEKSEEVSKII CONJECTUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We bring new insights into the longstanding Alekseevskii conjecture, namely that any connected homogeneous Einstein manifold of negative scalar curvature is diffeomorphic to a Euclidean space, by proving structural results which are actually valid for any homogeneous expanding Ricci soliton, and generalize many well-known results on Einstein solvmanifolds, solvsolitons, and nilsolitons. We obtain that any homogeneous expanding Ricci soliton M=G/KM=G/K is diffeomorphic to a product U/K×NU/K×N, where UU is a maximal reductive Lie subgroup of GG and NN is the maximal nilpotent normal subgroup of GG, such that the metric restricted to NN is a nilsoliton. Moreover, strong compatibility conditions between the metric and the action of UU on NN by conjugation must hold, including a nice formula for the Ricci operator of the metric restricted to U/KU/K. Our main tools come from geometric invariant theory. As an application, we give many Lie theoretical characterizations of algebraic solitons, as well as a proof of the fact that the following a priori much stronger result is actually equivalent to Alekseevskii’s conjecture: Any expanding algebraic soliton is diffeomorphic to a Euclidean space.Fil: Lafuente, Ramiro Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; ArgentinaInternational Press Boston2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8500Lafuente, Ramiro Augusto; Lauret, Jorge Ruben; Structure of homogeneous Ricci solitons and the Alekseevskii conjecture; International Press Boston; Journal of Differential Geometry; 98; 2; 10-2014; 315-3470022-040Xenginfo:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.jdg/1406552252info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1212.6511v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:40:41Zoai:ri.conicet.gov.ar:11336/8500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:40:41.451CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture |
| title |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture |
| spellingShingle |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture Lafuente, Ramiro Augusto RICCI SOLITONS HOMOGENEOUS MANIFOLDS ALEKSEEVSKII CONJECTURE |
| title_short |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture |
| title_full |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture |
| title_fullStr |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture |
| title_full_unstemmed |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture |
| title_sort |
Structure of homogeneous Ricci solitons and the Alekseevskii conjecture |
| dc.creator.none.fl_str_mv |
Lafuente, Ramiro Augusto Lauret, Jorge Ruben |
| author |
Lafuente, Ramiro Augusto |
| author_facet |
Lafuente, Ramiro Augusto Lauret, Jorge Ruben |
| author_role |
author |
| author2 |
Lauret, Jorge Ruben |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
RICCI SOLITONS HOMOGENEOUS MANIFOLDS ALEKSEEVSKII CONJECTURE |
| topic |
RICCI SOLITONS HOMOGENEOUS MANIFOLDS ALEKSEEVSKII CONJECTURE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We bring new insights into the longstanding Alekseevskii conjecture, namely that any connected homogeneous Einstein manifold of negative scalar curvature is diffeomorphic to a Euclidean space, by proving structural results which are actually valid for any homogeneous expanding Ricci soliton, and generalize many well-known results on Einstein solvmanifolds, solvsolitons, and nilsolitons. We obtain that any homogeneous expanding Ricci soliton M=G/KM=G/K is diffeomorphic to a product U/K×NU/K×N, where UU is a maximal reductive Lie subgroup of GG and NN is the maximal nilpotent normal subgroup of GG, such that the metric restricted to NN is a nilsoliton. Moreover, strong compatibility conditions between the metric and the action of UU on NN by conjugation must hold, including a nice formula for the Ricci operator of the metric restricted to U/KU/K. Our main tools come from geometric invariant theory. As an application, we give many Lie theoretical characterizations of algebraic solitons, as well as a proof of the fact that the following a priori much stronger result is actually equivalent to Alekseevskii’s conjecture: Any expanding algebraic soliton is diffeomorphic to a Euclidean space. Fil: Lafuente, Ramiro Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina |
| description |
We bring new insights into the longstanding Alekseevskii conjecture, namely that any connected homogeneous Einstein manifold of negative scalar curvature is diffeomorphic to a Euclidean space, by proving structural results which are actually valid for any homogeneous expanding Ricci soliton, and generalize many well-known results on Einstein solvmanifolds, solvsolitons, and nilsolitons. We obtain that any homogeneous expanding Ricci soliton M=G/KM=G/K is diffeomorphic to a product U/K×NU/K×N, where UU is a maximal reductive Lie subgroup of GG and NN is the maximal nilpotent normal subgroup of GG, such that the metric restricted to NN is a nilsoliton. Moreover, strong compatibility conditions between the metric and the action of UU on NN by conjugation must hold, including a nice formula for the Ricci operator of the metric restricted to U/KU/K. Our main tools come from geometric invariant theory. As an application, we give many Lie theoretical characterizations of algebraic solitons, as well as a proof of the fact that the following a priori much stronger result is actually equivalent to Alekseevskii’s conjecture: Any expanding algebraic soliton is diffeomorphic to a Euclidean space. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8500 Lafuente, Ramiro Augusto; Lauret, Jorge Ruben; Structure of homogeneous Ricci solitons and the Alekseevskii conjecture; International Press Boston; Journal of Differential Geometry; 98; 2; 10-2014; 315-347 0022-040X |
| url |
http://hdl.handle.net/11336/8500 |
| identifier_str_mv |
Lafuente, Ramiro Augusto; Lauret, Jorge Ruben; Structure of homogeneous Ricci solitons and the Alekseevskii conjecture; International Press Boston; Journal of Differential Geometry; 98; 2; 10-2014; 315-347 0022-040X |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.jdg/1406552252 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1212.6511v2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
International Press Boston |
| publisher.none.fl_str_mv |
International Press Boston |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597524622868480 |
| score |
13.24909 |