Quantifier elimination for elementary geometry and elementary affine geometry
- Autores
- Grimson, Rafael; Kuijpers, Bart; Othman, Walied
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination.
Fil: Grimson, Rafael. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kuijpers, Bart. Universiteit Limburg; Bélgica
Fil: Othman, Walied. Universitat Zurich; Suiza - Materia
-
Affine Geometry
Euclidean Geometry
Geometric Constructions
Quantifier Elimination
Semi-Algebraic Geometry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68254
Ver los metadatos del registro completo
| id |
CONICETDig_5bda56123ea067e5261c29e80edb39ec |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68254 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Quantifier elimination for elementary geometry and elementary affine geometryGrimson, RafaelKuijpers, BartOthman, WaliedAffine GeometryEuclidean GeometryGeometric ConstructionsQuantifier EliminationSemi-Algebraic Geometryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination.Fil: Grimson, Rafael. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kuijpers, Bart. Universiteit Limburg; BélgicaFil: Othman, Walied. Universitat Zurich; SuizaWiley VCH Verlag2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68254Grimson, Rafael; Kuijpers, Bart; Othman, Walied; Quantifier elimination for elementary geometry and elementary affine geometry; Wiley VCH Verlag; Mathematical Logic Quarterly; 58; 6; 11-2012; 399-4160942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201100095info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.201100095info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:49:08Zoai:ri.conicet.gov.ar:11336/68254instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:49:08.529CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Quantifier elimination for elementary geometry and elementary affine geometry |
| title |
Quantifier elimination for elementary geometry and elementary affine geometry |
| spellingShingle |
Quantifier elimination for elementary geometry and elementary affine geometry Grimson, Rafael Affine Geometry Euclidean Geometry Geometric Constructions Quantifier Elimination Semi-Algebraic Geometry |
| title_short |
Quantifier elimination for elementary geometry and elementary affine geometry |
| title_full |
Quantifier elimination for elementary geometry and elementary affine geometry |
| title_fullStr |
Quantifier elimination for elementary geometry and elementary affine geometry |
| title_full_unstemmed |
Quantifier elimination for elementary geometry and elementary affine geometry |
| title_sort |
Quantifier elimination for elementary geometry and elementary affine geometry |
| dc.creator.none.fl_str_mv |
Grimson, Rafael Kuijpers, Bart Othman, Walied |
| author |
Grimson, Rafael |
| author_facet |
Grimson, Rafael Kuijpers, Bart Othman, Walied |
| author_role |
author |
| author2 |
Kuijpers, Bart Othman, Walied |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Affine Geometry Euclidean Geometry Geometric Constructions Quantifier Elimination Semi-Algebraic Geometry |
| topic |
Affine Geometry Euclidean Geometry Geometric Constructions Quantifier Elimination Semi-Algebraic Geometry |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination. Fil: Grimson, Rafael. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kuijpers, Bart. Universiteit Limburg; Bélgica Fil: Othman, Walied. Universitat Zurich; Suiza |
| description |
We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68254 Grimson, Rafael; Kuijpers, Bart; Othman, Walied; Quantifier elimination for elementary geometry and elementary affine geometry; Wiley VCH Verlag; Mathematical Logic Quarterly; 58; 6; 11-2012; 399-416 0942-5616 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/68254 |
| identifier_str_mv |
Grimson, Rafael; Kuijpers, Bart; Othman, Walied; Quantifier elimination for elementary geometry and elementary affine geometry; Wiley VCH Verlag; Mathematical Logic Quarterly; 58; 6; 11-2012; 399-416 0942-5616 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201100095 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.201100095 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
| publisher.none.fl_str_mv |
Wiley VCH Verlag |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598053598003200 |
| score |
12.976206 |